
Computer Vision Tools for Locating
Nitrogen-Vacancy Centers

Eric Wadkins, Michael Walsh, Dirk Englund
Quantum Photonics Laboratory, Massachusetts Institute of Technology, Cambridge MA, 02139, USA

ewadkins@mit.edu

Abstract: Presented in this paper is my work on the detection and auto-focus algorithms
used by the Quantum Photonics Laboratory at RLE to locate nitrogen-vacancy centers. I
discuss the design, implementation, and evaluation of the system, as well as its future use in
improving instrument localization for self-driving microscopy.

1. Introduction

The Quantum Photonics Laboratory uses a confocal cam-
era to detect nitrogen-vacancy (NV) centers in a diamond
surface. Locating these NV centers requires the examina-
tion of auxiliary QR codes that contain location informa-
tion, as well as other information regarding the NV cen-
ters. The detection method, however, must be tolerant to
noise and variations in the surface of the diamond. An-
other challenge faced by the lab is finding the focal plane
in which the QR codes are visible. The region in which
the codes are visible (and focused enough to extract the
necessary information) is generally very narrow, making
it difficult to focus the confocal camera manually.

As evidenced by these challenges in the detection and
focusing of the QR codes, the lab stands to benefit signifi-
cantly from a system which automates these tasks. There-
fore, my work for the Quantum Photonics Laboratory in-
cludes an automatic detection and focusing system. This
paper details the design and implementation of the sys-
tem, a brief performance evaluation, and a discussion of
its future use in self-driving microscopy.

2. Detection

In order to extract information from the QR codes, the
system requires a detection method that is tolerant to a
noisy environment. To achieve this, a technique known as
image correlation is used, which is closely related to im-
age convolution. This technique calculates how closely a
region of the input image resembles the correlation ker-
nel. Therefore, using a gray-scale model of a QR code as
the correlation kernel (see Figure 1) allows for the accu-
rate detection of regions of the image that closely resem-
ble a QR code. Image correlations are calculated by fast
Fourier transform (FFT), one method of efficiently calcu-
lating convolutions/correlations which provides an espe-
cially large speedup for large kernels. [1]

Fig. 1: The correlation kernel used in detection of QR
codes near NV-centers.

One problem with using image correlation, though, is
that the background gradient of the images results in some
of the darker regions having an output value similar to that
of an actual QR code (see (b) in Figure 3). To counter
this problem, the result of the image correlation is passed
through a notch filter, which filters out the solid high-
value regions, leaving only the high-value regions repre-
sentative of QR codes (see (c) in Figure 3). [2]

At this point in the pipeline, all there remains to do is
to group together the high-value points that correspond to
each individual QR code. This is done by thresholding the
image and using blob detection, which is a simple way
to group regions together based on value. However, since
different images may result in drastically different values,
a static threshold cannot be used. Therefore, I have created
a process to dynamically determine an appropriate thresh-
old. The process works by initially setting the threshold
at a low, preset value proportional to the average value
of the image. Then, the thresholding is performed and the
number of different regions is calculated. Should the num-
ber of regions be too high (greater than some k) or any of



Fig. 2: The automatic detection of four QR codes on a diamond surface; one of which (left) is partially obscured.

the regions be too large, the threshold is increased and the
process repeats. I have found this to be an effective way to
dynamically determine an accurate threshold, while at the
same time excluding false positives. Unfortunately, this
comes with the restriction that there may not be more than
k different regions detected, which limits the number of
QR codes that can be detected at once. This, however, is
an acceptable restriction for the use case of the Quantum
Photonics Laboratory.1

Figure 2 (above) shows example results of the detection
algorithm. Figure 3 (below) shows the processed image in
each step of the detection pipeline.

Fig. 3: The four steps in the detection pipeline. Brighter
regions depict regions of higher value.

3. Calibration

The detection algorithm detailed in section 2 works given
specific values for two parameters: the scale and orien-
tation of the QR codes. Therefore, there must be a way
to determine the scale and orientation prior to running
the detection algorithm (as well as the auto-focusing al-
gorithm discussed in section 4).

One way to determine if a pair of parameters is able to
identify the QR codes is to pass the image through a por-
tion of the detection algorithm with those parameters. The
higher the output, the more likely it is that a detected QR
code was found with those parameters. A major challenge,
though, is that if either one of the parameters is incorrect
(eg. scale is correct, but orientation is not), the detection
algorithm will fail to detect any QR codes.

Therefore, the calibration process performs a beam
search over both domains simultaneously. First, a search
with a large step size is performed in order to minimize the
number of tests required. As the search proceeds, the size
of the search space is significantly reduced, along with the
step size. Figure 4 (below) shows an example of the cali-
bration search space and this reduction procedure.

Fig. 4: A heatmap of the detection algorithm output over
the calibration search space. The magenta rectangle

shows the size of the search space after just one iteration.

1We use a limit of 8. This is reasonable, as most of the time there will only be 4 codes visible at once.



Fig. 5: The average intensity as position varies relative
to the focal plane.

Fig. 6: The max detection output as position varies
relative to the focal plane. Secondary maxima often exist

as a result of regions of in-focus noise.

This search space reduction repeats until the step size
reaches a predefined lower limit depending on the level
of accuracy desired. The parameter pair with the maxi-
mum output is then stored for later use by the detection
and auto-focusing algorithms.

Using this method to search for the correct pair of pa-
rameters decreases the runtime of the calibration process
and increases the accuracy, since the allowed error can be
set to be arbitrarily small. In this way, accuracy can be
traded off for improved runtime as needed.

4. Auto-Focus

The process of automatically focusing the confocal cam-
era is similar to the calibration process described in sec-
tion 3, except that it requires physical adjustments to the
position of the camera, rather than simply performing op-
erations on the same input image. As such, it is critical to
minimize the number of steps that must be taken to focus
the camera.

Fortunately, there are two metrics that this process may
take advantage of when focusing the camera: average in-
tensity and detection output. As the camera approaches
the focal plane, the average intensity of the image tends
to increase (see Figure 5). This realization provides us a
quick way to get close to the focal plane. This also has the
added benefit of ensuring that the correct local maximum
of the detection output is explored (see Figure 6). How-
ever, analyzing intensities alone is not an accurate enough
method of focusing the camera.2 For the level of accuracy
desired, we must also use the output of the detection algo-

rithm (see Figure 6).
The process begins by receiving input from the cam-

era at some arbitrary initial position. Then, the first step is
always to instruct the camera to move away from the sur-
face (to avoid a potential collision, should the camera’s
initial position be too near the surface). The intensity of
each input image is calculated, providing us with two data
points. The intensities can then be compared to determine
the direction of the maximum relative to the current posi-
tion.

Once the direction of the maximum is determined, the
camera is instructed to move in that direction with a rela-
tively large step size (we chose 2 µm), and collect intensity
data as it moves. This continues until several decreasing
intensity values are observed, indicating that the camera
is now moving away from the focal plane. Then, using
the changes in position and the intensity values observed
at those positions, a quadratic curve can be fit to the col-
lected data. The maximum of this curve, which provides a
strong estimate of the actual maximum, can be calculated,
after which the camera is instructed to move to that posi-
tion.

The auto-focusing process now switches to using the
detection output as a measure of how focused the QR
codes are. Similar to the first step of this process, the cam-
era is then instructed to move slightly away from the sur-
face to collect a second data point. Using these two points,
the direction of the maximum can be determined. The
camera is then instructed to move towards the maximum
with a small step size (depending on the level of accuracy

2This is partially because as the QR codes come into focus, the intensity decreases slightly due to their dark appearance. Intensity is also simply
a weak indicator of the presence of QR codes.



desired; we chose 200 nm), collecting the maximum out-
put values as it does so. The maxima of the detection out-
put tend to be unimodal and positioned far apart from each
other, as seen in Figure 6. For this reason, once the out-
put values are observed to be decreasing, we can be cer-
tain that we have observed the maximum, after which we
instruct the controller to position the camera at the maxi-
mum and signal that the auto-focus process is complete.

Careful consideration should be given when choosing
the step sizes. The step size in the first part of the pro-
cess, for which we chose 2 µm, determines how quickly
the data is collected and how far the camera must move.
As the step size increases, the number of steps taken de-
creases, but the distance the camera must overshoot the
focal plane in order to fit the quadratic increases. The
step size in the second part of the process, for which we
chose 200 nm, should be significantly smaller as it deter-
mines the minimum accuracy of the auto-focus algorithm.
Again, though, the smaller it is, the larger the number of
steps that must be taken to find the focal plane.

5. Evaluation

In this section, I evaluate the performance and accuracy
of the three essential components of the system: the de-
tection, calibration, and auto-focus algorithms.

5.1. Detection

To evaluate the accuracy of the detection algorithm de-
scribed in section 2, I put it to the test using a wide range
of input images. It is generally able to detect any QR code
that has at least two-thirds of the expected shape visi-
ble. Whether or not partially obscured QR codes are use-
ful is not the concern of this paper. In the rare case that
one or more easily-recognizable QR codes appear with a
less-recognizable code (eg. too close to edge, malformed
shape, etc.), the dynamic thresholding technique (see sec-
tion 2) may result in failure to detect the less recognizable
code. However, the vast majority of QR codes are able to
be correctly identified by the detection algorithm.

Arguably as important as correctly finding QR codes
is the ability to ignore the surrounding noise. This is pre-
cisely the reason that the dynamic thresholding technique
(see section 2) is utilized. Figure 7 shows the results of
the detection algorithm run on an image with an extreme
amount of noise (more noise than would ever be observed
in practice) — much of which could easily be mistaken for
a QR code due to the similar pattern. The QR code is also
poorly positioned near the edge of the image. However,
the detection algorithm is still able to correctly find the
one actual QR code in the image and generates no false
positives.

Fig. 7: Results of the detection algorithm run on an
image with an extreme amount of noise and a poorly

positioned QR code.

This illustrates that the detection algorithm is able to
recognize and subsequently ignore what may have been
false positives using other detection methods.

It is also important that the detection algorithm is able
to run in real-time. Due to several optimizations,3 a 460 x
344 image (the size commonly used by the Quantum Pho-
tonics Lab) takes on average just 70 milliseconds to run.
Consequently, the detection algorithm can run in real-time
with little or no noticeable delay.

5.2. Calibration

The calibration process, which the detection and auto-
focus algorithms are dependent on, works reasonably
well. Given a moderately clean image, such as the im-
age in Figure 2, the calibration process succeeds without
any problems. Given an image like the one in Figure 7,
however, results in the failure of the calibration process
to correctly determine the scale and orientation of the QR
codes. With that said, it is expected that the calibration
process would require a less-noisy image than the detec-
tion algorithm, as it must determine the scale and orien-
tation of the QR codes, rather than already having that
information available. Therefore, the calibration process,
while not flawless, definitely performs within the accu-
racy required of it. Also, the runtime of the calibration
process is not a concern, since it will only be run upon
re-orientation of the surface. Even then, it generally takes
under a minute to complete.

5.3. Auto-Focus

The auto-focus algorithm performs exceptionally well.
The steps taken to find the focal plane depend entirely on
the initial position of the camera. However, regardless of
starting position, the algorithm is always able to adjust
the camera into focus, and do so with little risk of a col-
lision with the surface. The algorithm also has very little
variation in the end result. While implementing the auto-
focus algorithm, I was concerned of the possibility that a

3The most significant optimization was the use of FFT to perform the image correlation. FFT performs several orders of magnitude faster than
other, more frequently used methods.



starting position too close to the focal plane would result
in a poorly-fitted quadratic curve, which would in turn
result in either an incorrect end result, or a correct result
that took much longer to converge to than normal. Fortu-
nately, this does not seem to be the case, as the quadratic
fits quite well regardless of the starting position.

Using 2 µm and 200 nm as the large and small step
sizes, respectively, we tested the system with an initial
distance of 10 µm from the focal plane. Just 10 large steps
are required to fit the quadratic, and 5 small steps to find
the focal plane. An initial position that is already at the
focal plane, however, requires 4 large steps and 12 small
steps to find the focal plane. Due to irregularities in in-
tensity near the focal plane and the algorithm quickly
realizing it is moving away from the focal plane, there
are fewer steps to collect intensity data. As a result, the
quadratic less accurately estimates the position of the fo-
cal plane, resulting in a larger number of small steps to
find it. While unexpected, this behavior is beneficial con-
sidering the distance the camera must move: many small
steps are preferred to many large steps. Table 1 (below)
shows some of the test results when varying initial dis-
tance to the focal plane.

Initial Distance # Large Steps # Small Steps
0 µm 4 12
2 µm 6 4
5 µm 7 4
10 µm 10 4

Table 1: The number of steps required to find the focal
plane for various initial distances.

I also explored the use of edge detection in determining
whether an object was focused. However, this appraoch
was determined to be inferior to the chosen approach
because some noise may have well-defined edges, and
edge detection alone cannot distinguish between noise
with well-defined edges and focused QR codes. Using the
detection algorithm as a metric is therefore much better
suited for this task.

6. Conclusion & Future Work

As demonstrated by the results of the system evaluation
(see section 5), the methods described in this paper are
successfully able to automate the tasks of detecting QR
codes near NV centers and automatically focusing the
confocal camera on these QR codes. The next steps for
this system include performing integration tests to ob-

serve how the system behaves in conjunction with the
laboratory equipment. While I have already implemented
and tested (via a simulation) the module allowing the
auto-focus algorithm to communicate with the camera
controller, the system has yet to be tested beyond simula-
tions. Also, it would be worthwhile to further explore the
use of edge detection in the auto-focusing process, likely
in conjunction with the detection algorithm currently in
use. While I provided reasoning against using edge de-
tection alone (see section 5.3), using both methods may
provide a way to boost the results to an even higher level
of accuracy.

The work presented has the potential for use in other
applications within the Quantum Photonics Laboratory.
As part of a year-long research project throughout the
2017-2018 academic year, I will be conducting research
into how the detection algorithm detailed here can be
used to improve instrument localization for self-driving
microscopy. Coupled with Bayesian inference, it is pos-
sible to more accurately determine the location of instru-
ments over a surface encoded with location information
by taking into account the inherent level of uncertainty
that results from the use of physical instruments. The pro-
posed system will build upon, and in many ways be a
natural extension of, the work presented in this paper.
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