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Abstract

In this thesis, I present my work on a continuous silent speech recognition system for
AlterEgo, a silent speech interface. By transcribing residual neurological signals sent
from the brain to speech articulators during internal articulation, the system allows
one to communicate without the need to speak or perform any visible movements
or gestures. It is capable of transcribing continuous silent speech at a rate of over
100 words per minute. The system therefore provides a natural alternative to normal
speech at a rate not far below that of conversational speech. This alternative method
of communication enables those who cannot speak, such as people with speech or
neurological disorders, as well as those in environments not suited for normal speech,
to communicate more easily and quickly. In the same capacity, it can serve as a dis-
creet, digital interface that augments the user with information and services without
the use of an external device.

I discuss herein the data processing and sequence prediction techniques used,
describe the collected datasets, and evaluate various models for achieving such a con-
tinuous system, the most promising among them being a deep convolutional neural
network (CNN) with connectionist temporal classification (CTC). I also share the
results of various feature selection and visualization techniques, an experiment to
quantify electrode contribution, and the use of a language model to boost transcrip-
tion accuracy by leveraging the context provided by transcribing an entire sentence
at once.

Thesis Supervisor: Pattie Maes
Title: Professor, Media Arts and Sciences
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Chapter 1

Introduction

As humans, we have an incredible ability to understand information presented to us.

We are fortunate for this, as information plays a fundamental role in our lives. Our

decision making process is driven by access to information. And communication, the

means through which we share knowledge and form relationships with others, is, at

its simplest, the transfer of information. For this reason, access to information (or

lack thereof) is a limiting factor in what we can achieve, and can potentially interfere

with our ability to problem solve and communicate. Internet-connected computing

devices, on the other hand, have unmatched access to information, as well as the

computing power to solve many problems humans do not have the capacity to solve.

Still, machines cannot yet replace humans in performing many tasks. Therefore, a

natural solution arises – the coupling of human and machine, using the strengths of

both to more effectively achieve the user’s goals.

AlterEgo is a silent speech interface that aims to augment a human user with

the information and computing power available to a computing device, while also

providing an alternative means of communication. It is a wearable device, as detailed

by Kapur et al. [1] [2], that allows a user to communicate without any speaking

or visible movement. Unlike devices that listen for speech, AlterEgo reads residual

neurological signals produced during internal articulation or "silent speech" – often

described as one’s inner voice, which generally manifests as the slight activation of

the internal speech system. The system then uses machine learning to transcribe
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those signals into text. The resulting system is one that can be used similarly to a

voice-controlled virtual assistant, but without the need to actually speak or perform

any visible movements or gestures. When paired with a discreet feedback device, such

as bone conduction headphones, it gives the experience of having an AI or virtual

assistant in one’s head.

In this thesis, I present my work on a continuous silent speech recognition system

for AlterEgo as part of the research of the Fluid Interfaces Group at the MIT Media

Lab. By transcribing residual neurological signals sent from the brain to speech artic-

ulators during internal articulation, the system allows one to communicate without

the need to speak or perform any visible movements or gestures. It is capable of

transcribing continuous silent speech at a rate of over 100 words per minute. The

system therefore provides a natural alternative to normal speech at a rate not far

below that of conversational speech. This alternative method of communication en-

ables those who cannot speak, such as people with speech or neurological disorders,

as well as those in environments not suited for normal speech, to communicate more

easily and quickly. In the same capacity, it can serve as a discreet, digital interface

that augments the user with information and services without the use of an external

device.

I discuss herein the data processing and sequence prediction techniques used,

describe the collected datasets, and evaluate various models for achieving such a con-

tinuous system, the most promising among them being a deep convolutional neural

network (CNN) with connectionist temporal classification (CTC). I also share the

results of various feature selection and visualization techniques, an experiment to

quantify electrode contribution, and the use of a language model to boost transcrip-

tion accuracy by leveraging the context provided by transcribing an entire sentence

at once.
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1.1 Motivation

There are various scenarios in which normal speech is not a viable method of commu-

nication. A system capable of transcribing internally articulated words provides an

alternative method of communication, whether it be with another person or with a

computing device/virtual assistant. In the latter case, the system can serve as a dis-

creet, digital interface that augments the user with information and services without

the use of an external device and the disruption from one’s environment that often

comes with it.

First, the user may not wish to speak out loud for a few reasons. One such reason

is that the topic may be personal or not desirable to mention in public. The user may

also be in a public setting where others don’t want to be disturbed, such as on an

airplane or in a library. In situations like these, most people would generally opt for

physically interacting with a device, such as their phone, in order to communicate.

However, the need to physically interact with a device that could otherwise be used

tangentially may serve as a distraction or an inconvenience when trying to complete

a task. Second, the setting may not be conducive to a normal conversation with

another person or a device. For example, one may be near a large crowd or in a

factory, where the surrounding noise makes normal speech difficult to discern. In this

case, conversation or use of a voice-controlled virtual assistant is not just undesirable,

but infeasible.

Finally, and most importantly, many people have difficulty speaking or are un-

able to speak entirely (conditions known collectively as dysarthria) due to a variety of

speech or neurological disorders. The National Institute on Deafness and Other Com-

munication Disorders [3] states that approximately 7.5 million people in the United

States alone (over 2%, by Feb. 2019 UN estimates) have trouble using their voices

to communicate. All of the conditions associated with dysarthria affect one’s ability

to speak, but many do not affect one’s ability to internally articulate, the result of

residual signals from neuromuscular pathways that remain functional. In fact, several

user studies on the use of AlterEgo by ALS and MS patients showed that all partici-
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pating patients, with varying stages of their respective disorder, were able to produce

signals to the same extent as someone without any speech or neurological disorder.

Furthermore, in successful user trials, several patients with ALS and MS were able to

use our system to accurately transcribe a small vocabulary of silent speech into text,

which was then spoken aloud using text-to-speech software. Current systems that

allow affected patients to speak, known as speech generating devices, are slow to use

as they rely on an unnatural means of input, such as a headmouse or eye gaze. Many

are also tiring to use and prevent the user from making eye contact with others while

communicating. Therefore, a system that can accurately transcribe sentences from

internal articulation, a fairly natural means of input, and do so in real-time, could

potentially help millions of people communicate more easily.

1.2 Background and Related Work

Much work has been published on automatic speech recognition systems, and large

datasets have enabled rapid advancement in the field. Far less work has been pub-

lished with a focus on automatic recognition of silent speech, and doing so continu-

ously without any visible movement.

1.2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) systems are systems capable of transcribing

speech into written language. The capabilities of ASR systems vary greatly, so one

must be more specific when discussing these systems. In their review of speech recog-

nition systems, Saksamudre et al. [4] introduce a classification scheme based on a

system’s robustness and level of understanding of natural speech. The scheme clas-

sifies systems into the following levels, listed by level of understanding from most-

limited to most-inclusive: isolated-words, connected-words, continuous speech, and

spontaneous speech. The two levels relevant to this work are connected-words and

continuous speech systems. Connected-words systems recognize primarily individual

words, although they may recognize several words in succession with sufficient pauses
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between them. Users of these systems must be aware of the constraint placed on

them – a pause or delimiter signal of some sort is necessary for accurate transcription

of more than one word. This limits their ability to communicate naturally and at a

high rate of speech. These models also only take as input a single word at a time,

which results in each word being predicted independent of all others. The original

AlterEgo system, as described by Kapur et al. [1] [2], was a connected-words system,

and therefore was subject to all of the aforementioned problems. Continuous speech

systems, on the other hand, eliminate the need for clear divisions between words and

are able to transcribe entire sentences or phrases at a time. The system presented

in this thesis is categorized as a continuous speech system for this reason. Another

benefit of this type of system is that the input is an entire sentence or phrase, so the

context provided by surrounding words can be utilized in the prediction process to

improve prediction accuracy.

Continuous speech recognition systems for audible speech are already ubiquitous

in today’s world, and the technology is a major selling point for countless new de-

vices. Speech is a particularly rich input modality, and the technology required to

capture audio signals is no barrier to the development of these systems – even simple

microphones generally record at incredibly high sampling rates with very little sys-

temic noise. There are also many large datasets that can be used to train a speech

recognition system on regular speech. Unfortunately, none of the same can be said

for the modality of silent speech, making the development of reliable continuous silent

speech recognition systems an active area of research.

1.2.2 Silent Speech

The term "silent speech", as used in this thesis, refers specifically to internal artic-

ulation, which is the deliberate but subtle neurological activation of internal speech

articulators that is often observed while reading very intently. Importantly, this action

does not result in any sound or visible movement. In other papers, the term "silent

speech", as well as the more loosely-defined terms "subvocalization" and "subvocal

speech", are often used to describe actions that result in some visible movement or
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audible speech. Regardless of the level of movement or sound involved, all types of

subvocalization are a natural means of input as derivatives of natural speech. With

silent speech, rather than performing a gesture or coded interaction to indicate a

specific intent, one only needs to silently speak their intent, as if talking to oneself

internally. This is also arguably a more natural means of input than using a physical

device like a keyboard or mouse, as with these devices we must learn how to efficiently

express our ideas, unlike with natural speech. Therefore, silent speech shares all the

benefits of communicating with regular speech, without the need for any overt action

by the user.

Research into subvocalization started as early as 1970 when Eriksen et al. [5] and,

later in 1973, Klapp et al. [6], explored the concept of "implicit speech" in reading.

It was suggested that subvocalization may play a role in subjects’ understanding

of previously unseen words, as they would often pause and subvocalize new words

prior to reading them out loud. For this reason, subvocalization was thought to be a

precursor of spoken language, or another representation of the spoken language itself.

This, coupled with drastic improvements in speech recognition systems over the years,

led researchers to consider the possibility of transcribing subvocal speech into text.

The NASA Ames Research Center began research into subvocal speech recogni-

tion systems in 2003. In one paper, Jorgensen et al. [7] describe training a neural

network model to recognize 6 to 10 subvocal words, including digits zero through

nine. Their system used sub-audible (or sotto voce) speech and relied on electromyo-

graphic (EMG) signals from visible muscle movement – a clear distinction from our

system. Using 100 training samples of each word, they achieved an accuracy of 92% on

recorded test samples. Their conclusion upon experimenting with larger vocabularies

is that a 20-word recognition task seems feasible, but recognition of a significantly

larger vocabulary is not. As such, they suggest that the system be used with a small

vocabulary specialized to the task at hand. They also mention that the system still

suffers from being specific to a single user and sensitive to noise, electrode locations,

and physiological changes in the user. These issues have been found to affect the

AlterEgo system as well.
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Several other research groups have experimented with subvocal speech recognition

systems. There has been significant exploration in using invasive systems with direct

brain implants to recover signals generated during subvocal speech. Brumberg et al.

[8] report that the use of intracortical microelectrode arrays shows promising results in

early-stage trials with the goal of providing a speech prosthetic. Similarly, in a recent

Nature article, Anumanchipalli et al. [9] discuss their method of synthesizing intelligi-

ble speech from high-density electrocorticography (ECoG) signals. Using ECoG data

collected from patients while audibly speaking sentences at a normal conversational

rate, they are able to decode the signals into an intermediate audio spectrogram, and

then into sythesized speech. Sentence-level intelligibility tests, which asked subjects

to listen to and transcribe the synthesized speech, reported word error rates of 31%

for a 25-word vocabulary, and 53% with a 50-word vocabulary. These results were

for fully-audible speech, while they report that results for mimed speech (still with

significant visible movement) were significantly worse.

There has also been significant exploration of non-invasive systems, with the hope

of scaling beyond clinical use. Wand et al. [10] use a non-invasive system to transcribe

EMG signals from subvocal speech into text, achieving a fairly low word error rate

on a large vocabulary, but with clearly visible movements of the mouth. This work is

continued by Jou et al. [11], who evaluate a continuous subvocal speech recognition

system, but still with significant movements and a high word error rate.

All known studies, including those mentioned here, deviate from the goals of Al-

terEgo in a significant way. The vast majority focus only on transcribing individual

words with a connected-words level system or continuous speech with a low tran-

scription rate. As previously mentioned, the drawback of this, other than taking

significantly longer to communicate the same amount of information, is that the sys-

tem requires a significant pause between words and therefore feels much less natural

to use. The primary goal of our system, however, is to transcribe continuous silent

speech with a relatively high transcription rate. The few studies that do use continu-

ous recognition systems do not focus on transcribing internal articulation specifically.

Instead, their focus is on transcribing subvocal speech with significant movement of
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mouth or facial muscles, or with significant sound produced. While this is acceptable

in many situations, our use cases require little to no visible movement or sound, es-

pecially if our system is to aid patients who are unable to exert this level of muscular

control.

1.2.3 Sequence-to-Sequence Models

Continuous speech recognition systems make use of sequence-to-sequence models, also

known as sequence prediction or sequence generation models. These models produce

a variable-length sequence as output, as opposed to the fixed length output produced

by classification models. Continuous speech recognition requires the use of these mod-

els because the input to the system is a signal representing an entire sentence, and

the output is a variable-length sequence of words which form the full transcribed sen-

tence. Other examples of tasks that require sequence-to-sequence models are machine

translation, handwriting recognition, image captioning, and speech generation.

The learning process for sequence-to-sequence models differs significantly from

that of classification models. Using continuous speech recognition as an example,

not only must the model learn to classify portions of a signal as the correct word, it

must also learn how many words are present in the input signal and which portions

of the input signal correspond to each word in the output sequence. This surjective

function of input to output that must be learned by the model is known as the

alignment. For some applications, the ordering of the input and output segments

may not be the same, as is the case with machine translation due to grammatical

differences between languages. Fortunately, this is not the case for speech/silent

speech recognition systems, though, because the words in a sentence are always said

in the same order that they are written. This simple fact provides greater flexibility

in choosing a sequence-to-sequence modeling approach, which will be discussed in

more detail in Section 2.3.

The traditional approach to label sequence prediction, before heavy use of the now-

common recurrent neural network (RNN) encoder-decoder models, was to use a hybrid

neural network and hidden Markov model (HMM) model. The neural network would
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be used for classification at each timestep of the input sequence, and the HMM would

decode these predictions into the output label sequence, as discussed by Juang et al.

[12] in the context of speech recognition with HMMs. However, the need to train both

the classifier and decoder separately is undesirable. Currently, the most commonly

used approach for sequence prediction is the use of RNN encoder-decoder models. As

explained by Lu et al. [13], the approach uses an encoder RNN model to transform the

input sequence into a fixed-length vector representation, and a decoder RNN model

to transform the fixed-length vector, which theoretically contains information on the

entire input sequence, into an output sequence of labels. The loss is calculated from

the output of the decoder model, but because the decoder takes as input the output of

the encoder model, the two are trained simultaneously during loss optimization. There

are, however, a few downsides to using this approach. For long-term dependencies

to be reliably modeled, one must use a long short-term memory (LSTM) or gated

recurrent unit (GRU) model, both of which are slow to train. A simple RNN with

a less complicated activation function takes far less time to train than an LSTM or

GRU, but due to the issue of exploding/vanishing gradients [14], cannot manage long-

term dependencies. Also, RNNs in general are prone to overfitting, resulting in poor

generalization. The approach primarily used in this work, known as connectionist

temporal classification, is capable of overcoming both of these obstacles because of

its simplicity and ability to be used with either an RNN or CNN (see Sections 2.3.3

and 2.3.4).
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Chapter 2

Approaches

This chapter will describe the signals of interest and how they are captured, the

signal processing techniques used to separate meaningful features from noise, several

methods of feature selection and visualization, and the machine learning approaches

used to transcribe these signals into a sequence of words. Additionally, we detail the

integration of a language model for increased sequence prediction accuracy.

2.1 Signal Capture and Processing

2.1.1 Signal Capture

In creating a subvocal speech recognition system, the signals of interest are the in-

dividual neurological activations of internal speech articulators. As a non-invasive

device, there is no way for AlterEgo to directly record these signals. Instead, they

must be collected externally, far from the actual source. The best method for doing

this is with electrodes that can pick up on subtle disruptions in the electric field

surrounding speech articulators. With these electrodes placed on the face and neck

regions, as in Figure 2-1, an aggregation of the desired neuromuscular signals is ap-

parent during internal articulation. The device uses 8 signal electrodes and reference

and bias electrodes, measuring the potential difference between each signal electrode

and the reference electrode (with the bias electrode used for on-device data process-
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Figure 2-1: A typical arrangement of 8 signal electrodes (colors and gray, on face
and neck) and reference and bias electrodes (white and black, interchangeable on
earlobes).

ing). Figure 2-1 shows a typical arrangement of the electrodes. This arrangement, or

at times a subset of the electrodes, is used in all experiments detailed in this paper.

Many subsets of these 8 signal electrodes have been used without a noticeable drop

in accuracy, as some of the electrodes capture similar signals due to proximity to the

same muscles. For example, all electrodes placed on the neck (electrodes 4-7 in Figure

2-1), capture highly correlated signals, and therefore the system generally performs

the same with just one or two of them.

This method of using surface electrodes to capture signals from internal articu-

lation also captures a large amount of noise introduced by the body, as would be

expected when collecting distant physiological signals. The data collection device

also introduces a secondary source of noise, as well as a slight baseline drift in the

signals over time. This noise proves troublesome because the signals collected via

this method, as shown in Figure 2-2, are already comparatively weak (generally in

the range of single digit to low double digit microvolts), resulting in data with a low

peak signal-to-noise ratio. Therefore, some signal processing is required to extract

the features of interest before a model can learn from the data.
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Figure 2-2: The unprocessed signal of a sequence of three words ("tired", "hot", "i").
The 8 data channels are colored according to the electrode placement shown in Figure
2-1.

Figure 2-3: The DC offset (left) and baseline drift (right) of an unprocessed signal
over about 3 minutes. The signals in the right plot are normalized by their initial
value to show the baseline drift, but in reality are the same as in the left plot.

2.1.2 Correcting for DC Offset and Baseline Drift

The variation in electrode placement relative to the reference electrode creates a large

DC offset, which manifests as a seemingly arbitrary offset in each data channel. Ad-

ditionally, the device used to record potential differences between signal and reference

electrodes introduces a very low frequency source of noise. While this noise is low

enough in frequency that it affects only the baseline, or long-term mean amplitude of

a signal, this drift is rapid enough that the baseline can drift by up to a few hundred

microvolts (an order of magnitude larger than the amplitude of the signal of interest)

in less than a minute. These two effects are clear in signals collected over a long period

of time, as shown in Figure 2-3. They are also apparent on shorter time scales, albeit

much more subtly. The rate and direction of baseline drift is unpredictable and the
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Figure 2-4: A Butterworth highpass filter is used to remove frequencies less than 0.5
Hz. The uncorrected signal (top) baseline drifts significantly over a period of only
about 3.5 seconds, whereas the highpassed signal (bottom) does not.

baseline of each channel changes independently of the others. This negatively affects

a model’s ability to recognize features within a signal, as the relative amplitudes of

channels change in a way that is difficult for a model to learn.

To remove these artifacts, the signals are normalized by their initial values and

frequencies lower than 0.5 Hz are highpassed out using a 1st-order Butterworth filter.

Initial value normalization prior to the filtering is necessary to avoid severe artifacts

upon applying the Butterworth filter. Afterwards, the signals are normalized such

that the mean amplitude is zero, in order to center the signals. Figure 2-4 shows

the drift correction for a single recording of about 3.5 seconds in length. With the

correction, one can see the correlation of channel amplitudes across channels, which

is less obvious without the removal of the baseline drift.

2.1.3 Noise Removal Techniques

There are three sources of noise present in our data, after the DC drift has been

corrected. The first is a 60 Hz power line hum resulting from interference from the

power source. The second is a heartbeat artifact, which features prominently in the

data regardless of electrode placement. The third is noise originating from the body

due to the distance between the signal source and the surface, where signals are

recorded.
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Figure 2-5: Several Butterworth notch filters, with bands at multiples of 60 Hz,
are used to remove the power line hum. The notch-filtered signal and its frequency
domain (bottom) show almost no noise at multiples of 60 Hz, unlike the signal with
power line interference (top).

The simplest, yet still effective, approach of the many approaches documented

by Mewett et al. [15] for removing the power line hum is by using a notch filter – a

band-stop filter that removes a narrow band of frequencies. For best results, notch

filters are applied not just to the 60 Hz frequency, but to all multiples of 60 Hz less

than the sampling rate. Looking at the frequency domain of the signal, all multiples

of 60 Hz have a significantly higher magnitude than the surrounding frequencies, so

removing solely the 60 Hz band does not remove all of the power line hum. Figure 2-5

shows the signals and frequency domains before and after these filters are applied.

Heartbeat artifacts are very prominent in the collected data and cannot be con-

trolled for, unlike artifacts from actions such as blinking or head movement. For-

tunately, heartbeat artifacts are also very distinct. However, they are difficult to

remove while preserving all other features, because they resemble narrow features of

interest and occur at intervals of relatively low frequency. As such, they are not en-

tirely removed by the other noise reduction techniques discussed in this section, which

focus on removing high frequency noise while preserving lower frequency features of

the data. Therefore, rather than using a band-stop filter, a wavelet convolution is

applied to select for regions that resemble a heartbeat artifact. More specifically, a

Ricker wavelet is used as an approximation of a heartbeat artifact. The convolution

is then subtracted from the original signal to reduce the prominence of heartbeat arti-
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Figure 2-6: A Ricker wavelet (left) is convolved with a signal with heartbeat artifacts
(top). The convolution (middle) is then subtracted from the signal, resulting in ap-
proximate removal of heartbeat artifacts without significantly distorting the original
signal (bottom).

facts without significantly distorting the original signal. Figure 2-6 shows the Ricker

wavelet, an example convolution, and the resulting signal with reduced heartbeat

artifacts.

Finally, the body introduces a lot of high frequency noise that is of little to no use

in our sequence prediction task, as the features we are trying to learn are much lower

frequency. The solution is to simply apply a bandpass filter to the range of frequencies

we are interested in, which we have determined through analysis of the frequency

domain to be 0.5 to 8 Hz. Since filters only reduce the magnitude of the target

frequencies, often times some high frequency noise remains. An alternative solution,

if one wishes to ensure complete removal of all frequencies outside the desired band,

is to calculate the FFT of the signal, zero out the frequencies directly, and then use

the inverse FFT of this modified frequency domain. Both approaches result in similar

accuracies when tested with a sequence prediction task. With this filter applied, we

arrive at our fully processed signal, as shown in Figure 2-7.
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Figure 2-7: A Butterworth bandpass filter is applied to a signal (top) to remove most
noise outside the frequency band 0.5-8 Hz, resulting in clearly visible low-frequency
features (middle). Alternatively, modifying the frequency domain removes completely
all frequencies outside of this band (bottom).

2.2 Feature Selection and Visualization

We also used various feature selection techniques in an attempt to emphasize the

meaningful features of a signal, while also providing a better way to visualize the data.

We experiment with wavelet convolutions and methods of unsupervised learning,

namely k-means clustering to group similar features and an autoencoder to transform

the data into a more-meaningful, lower-dimensional latent space, while at the same

time removing uncommon features and noise.

2.2.1 Wavelet Convolutions

Wavelets can be used to extract specific features from a signal, and are generally used

to select for areas of a signal that are closely correlated with the wavelet. For example,

a sine wavelet of a certain frequency will result in a convolution that emphasizes the

regions of a signal with that particular frequency. Therefore, if a particular feature of

the signal is difficult for a neural network to learn, one can input the wavelet-convolved

signal to provide the network with the pre-selected feature. This transformation
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Figure 2-8: Examples of normalized sine, Gaussian, and square wavelets, all centered
around zero, and the corresponding convolutions on an example signal.

allows the network to learn from the features of interest without having to learn to

recognize them in the raw signal.

The collected neuromuscular signals generally contain numerous peaks and falls

of varying amplitudes, centered around zero. Therefore, the most revealing wavelets

tend to be those correlated with different types of peaks and falls centered around

zero. Sine wavelets of different frequencies emphasize peaks of those same frequencies

very well, as they essentially filter out other frequencies. Gaussian wavelets perform

similarly, but without eliminating so much of the features at different frequencies. We

also experimented with wavelets such as square wavelets, which do not resemble a

sinusoidal wave and therefore do not have as much of a smoothing or denoising effect,

while still serving to emphasize similar features. Figure 2-8 shows these three types

of wavelets and the resulting convolutions on an example neuromuscular signal.

Wavelets provide a way to select a subset of the features present in a signal by

choosing a specific wavelet, and are therefore also useful in visualizing different fea-

tures of a signal. However, we have found that our neural network models did not
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perform significantly better when wavelets were applied, even if the resulting convo-

lutions were used simply to augment the raw signal. This indicates that the model

has no issue learning the full set of features present in the data. With that said, for

specific vocabularies, we have seen a marginal increase in classification accuracy using

sine wavelets, presumably because they selected the most information-rich frequencies

and filtered out the rest.

2.2.2 K-Means Clustering

Figure 2-9: An example sequence (top), the clusters chosen from a large dataset of
similar sequences (bottom), and the cluster representation of the example sequence
(middle).

Unsupervised learning can be used to find features in data without knowing what

distinguishing features are present. K-means clustering is one way to select for and

visualize features of the signals, and can also serve as a form of dimensionality reduc-

tion. We use fixed-size windows of many example signals to determine the 𝑘 clusters,

which represent the 𝑘 most distinct features found in the data. One can then trans-

form the signal into the cluster space by calculating the distance from each cluster
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mean at each timestep. In essence, this resulting cluster representation is a sequence

where each channel corresponds to the likelihood of one of the 𝑘 most likely features

(as determined by the clusters).

Figure 2-9 shows an example sequence, the 5 clusters chosen from a large dataset of

similar sequences, and the cluster representation of the example sequence. A benefit

of this approach is that it finds a good representation of the 𝑘 most distinct features

found in the data, and therefore each channel of the resulting cluster representation

selects for a unique feature. This is also beneficial in that no channel is highly

correlated with any other channel, as can clearly be seen in the middle plot of Figure

2-9, which helps to maximize the amount of information contained in each channel

while also providing a good visualization. For this reason, there is no need to manually

design filters to select features of interest, as in Section 2.2.1.

2.2.3 Autoencoder and PCA of the Latent Space

An autoencoder is another method of unsupervised learning that can be used to se-

lect and visualize significant features, as well as remove uncommon features and noise

from the signal. An autoencoder works by learning how to encode data into a more-

meaningful, lower-dimensional latent space by reducing the amount of information

the sequences can be represented in. At the same time, it learns how to decode this

encoding, or condensed representation, into a reconstructed signal. Reducing the

amount of information the signal can be represented in forces only the most signif-

icant/common features to be learned, leading to the removal of uncommon features

and noise.

We used a CNN to encode our data, similar to the CNN described in Section 2.3.4.

It uses three fully connected layers as a decoder, the first of which is only 32 units

– this represents the dimensionality of the latent space that we are transforming our

data into. It operates on a fixed-size window and is trained on windows from all of

the recordings of one of the datasets we collected. Figure 2-10 shows example output

from an autoencoder with a window size of 1000 samples. One can see that signals

reconstructed from the autoencoder’s condensed representation are devoid of smaller,
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Figure 2-10: Example output from an autoencoder with a window size of 1000 sam-
ples. One can see that signals reconstructed from the autoencoder’s condensed rep-
resentation are devoid of smaller, high-frequency features, which the autoencoder
cannot afford to encode in only 32 units of information. It also removes less common
features, like periods of extreme noise that occur very rarely.

high-frequency features, which the autoencoder cannot afford to encode in the only

32 units of information. It also removes less common features, like periods of extreme

noise that occur very rarely. We chose to use 32 units as the size of the condensed

representation because it results in the desired level of detail. Fewer units results in

less detail, and significantly more units allows more of the higher frequency features

and noise to be learned.

When we tested our sequence predictions models, as described in Section 2.3, with

condensed representations of the signals, rather than the actual signals, we received

similar results (albeit with much faster training). This indicates that the autoencoder

is able to learn the same features as the CNN and LSTM models used in sequence

prediction. For this reason, we use the autoencoder for visualization, but not directly

in our sequence prediction models.

Once a latent space that accurately represents the signals is learned, we can then

attempt to directly visualize what features the autoencoder has learned. One way to

perform this visualization is to manually modify each unit of the encoding and see how

it affects the reconstructed signal (i.e. the decoded encoding). However, the latent

space dimensions are not guaranteed, and are in fact very unlikely, to be independent

of each other, making it difficult to visualize the features each unit affects.
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Figure 2-11: The changes to the reconstructed signal upon modifying one of the
principal components reveals what features have been learned by the autoencoder
that are controlled by that component. The process without any changes to the
principal components is shown on top, and the results upon modifying PC5 are shown
on bottom.

A solution to this is to use principal component analysis (PCA) to find an orthog-

onal transformation that transforms the data into a space with linearly uncorrelated

dimensions. In this transformed space, each component will control a feature (or set of

features) in the reconstructed signal independent of all other components. After spe-

cific principal components have been modified, we can use inverse PCA to transform

the principal components back to the latent space encoding and run it through the

decoder to see the reconstructed signal. The changes to the reconstructed signal upon

modifying one of the principal components reveals what features have been learned

by the autoencoder that are controlled by that component. Figure 2-11 demonstrates

this process. Doing this for all principle components is one way of visualizing what

features an autoencoder has learned. We trained an autoencoder with a latent size

of 32 on a large dataset and performed this analysis on all 32 of the principal com-

ponents. The results are shown in Figure 2-12. Also shown in the figure is the

explained variance, or eigenvalue, of each of the principal components, which gives a

measure of how prevalent the features controlled by each component are. One can see

that the first 6 or 7 principal components control very distinct features, whereas the

38



Figure 2-12: The effect of each principal component on the reconstructed signal, us-
ing an autoencoder with latent size 32. Visualizing the effects is done by manually
modifying the principal components in the transformed encoding space and seeing
the change in the reconstructed signal. Also shown is the explained variance, or
eigenvalue, of each of the principal components, which gives a measure of how preva-
lent the features controlled by each component are. One can see that the first 6 or
7 principal components control very distinct features, whereas the higher principal
components seem to have features in common, or show no significant features at all.
This is reflective of the features actually seen in the dataset.

higher principal components seem to have features in common, or show no significant

features at all. This is reflective of the features actually seen in the dataset.

2.3 Sequence Prediction

Many sequence prediction approaches are suitable for transcribing neuromuscular

signals from internal articulation into text. The primary approach discussed in this

paper uses connectionist temporal classification [16]. However, we will share a naive

approach to sequence prediction through the use of classification models. The chal-

lenges encountered in this approach highlight the difficulties in using classification

models for sequence prediction, and the benefits of sequence-to-sequence models.
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2.3.1 Dual Word and Activation Classifier

If one is willing to accept a few constraints on the use of the system, a simple approach

to sequence prediction is to use two classification models. The first model, the word

classifier, must take as input a fixed-size window of the signal and predict which

single word it represents. The second model, the activation classifier, must also take

a fixed-size window, but instead predicts whether the signal represents activity or

non-activity (i.e. whether the user was silently speaking at the moment or not).

In this approach, the activation classifier plays the important role of determining

the boundaries between words. When it recognizes a period of activity, the word

classifier will then output its prediction for that window of the signal. Together,

these independently-predicted words form a sentence.

While neither of the models discussed in this dual-classifier approach are sequence-

to-sequence models, used together they can achieve something along the same lines

with reasonable accuracy. However, there are still several fairly large negatives to this

approach. First, both models operate on a fixed-size window (although the models

need not share the same window size). This requires that each word of the vocabulary

can be accurately represented in a window of that size, which is problematic for very

short or very long duration words. Also, having to choose an appropriate window size

for these models introduces another hyperparameter that must be tuned in order to

get accurate results. Second, accurate transcription of a series of words relies on high

accuracy of both models. If the activation classifier incorrectly predicts the user’s

intent, then the result will be incorrect regardless of the word classifier’s accuracy.

Finally, and most importantly, this approach imposes an additional constraint on

the user of the system. They must include long enough pauses between words for

the activation classifier to recognize a period of non-activity, preventing one from

articulating at a natural rate.

A similar approach is to use a single classifier that classifies a portion of the signal

as any one of the words or as non-activity. This alternative approach is used similarly

to the one described above, except that the two classifiers are combined into one.
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While this method simplifies the prediction process by referencing only one model, it

has proven to be significantly more error prone for larger vocabularies.

For both the window and activation classifier we use a deep CNN consisting of five

convolutional layers (with filters counts [64, 128, 256, 512, 512] and filter sizes [12,

6, 3, 3, 3], respectively) each with a max pooling of size and stride 2, dropout with

rate 0.4, one fully connected layer of size 256 units, and a softmax output layer. All

layers use a rectified linear unit (ReLU) activation function. The word classifier takes

as input a window of size 450 samples (with a sample rate of 250 Hz, this equates to

just under 2 seconds of data). The activation classifier, on the other hand, takes as

input a much smaller window of size 150 samples (0.6 seconds of data). Additionally,

in decoding the activation classifier, we use a window stride of 1/8 of that (about 18

samples, or 75 ms of data). Long periods of activity, represented by a large number

of consecutive windows being classified as activity with high-confidence, surrounded

by periods of silence, are used to calculate roughly the bounds of each word. The

sequence window centered on these bounds is then classified by the word classifier,

resulting in a single-label prediction. Over the entire sequence, this dual-classifier

process is used to output an entire sequence of labels.

2.3.2 Connectionist Temporal Classification (CTC)

In their 2006 paper, Graves et al. [16] present a method of predicting a sequence

of labels for unsegmented sequence data called connectionist temporal classification

(CTC). As Figure 2-13 illustrates, a model using CTC is structured and used very

similarly to a simple classification model. In fact, the only difference between the two

approaches, other than the introduction of an additional class to the classification

model, is the use of CTC loss instead of softmax cross entropy loss during training,

and the addition of the CTC decoder during prediction (both of which are external

to the model).

Before discussing the details of CTC loss and the CTC decoding process, we will

share some of the benefits of the use of CTC. The approach is unique in that it

allows a classification model – one that outputs a single label prediction – to be used
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Figure 2-13: A comparison of the single-word prediction and sentence prediction
pipelines, showing the minimal difference in structure and function of the two archi-
tectures.

directly for label sequence prediction simply by adding an extra class to the classifier’s

softmax output. All other sequence prediction approaches use a specific architecture

designed for sequence generation, such as a recurrent neural network (RNN) encoder-

decoder model. CTC’s similarity to classification models allows one to easily take the

structure of a well-performing label classifier and use it to predict an entire sequence

of labels with very few changes to the architecture.

Most importantly, though, knowledge of the label boundaries in the input data (i.e.

the alignment between the input and label sequence) is not required during training.

In our case, this means that a model using CTC for silent speech transcription is able

to train on examples of sentences and their corresponding label sequences without

knowing the boundaries of the words within the input data; it need only take an entire

unsegmented sentence as input. A sequence prediction model being able to operate

on unsegmented data is, of course, expected during prediction, but being able to train

the model with unsegmented data drastically simplifies the data collection process,

and is therefore a significant advantage over other sequence prediction models.

CTC works primarily by focusing on what the paper refers to as temporal clas-

sification, in contrast to framewise classification. Framewise classification refers to

outputting the most likely label at each frame in the time series data. Temporal clas-

sification refers to outputting one label for each subsequence of frames that represents
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a particular label, and outputting an empty label at intermediate frames. This critical

difference makes decoding of a temporal classifier a much simpler task. As the authors

explain, a framewise classifier produces a probability distribution over the labels for

each frame independent of all other frames. While this is useful for determining the

likelihood of a single frame representing each of the labels, this leaves the difficult

task of decoding the output of a framewise classifier into the desired label sequence,

as the label sequence is necessarily no longer, and generally much shorter, than the

number of frames of input data. Traditionally, hidden Markov models (HMMs) have

been used for this task, as detailed by Bourlard et al. [17]. A temporal classifier

differs in that it produces a probability distribution over the set of labels plus an

additional "blank" label at each frame. Using CTC, a temporal classifier is trained

in such a way that this "blank" label clearly indicates a boundary between portions

of the input sequence that correspond to a single output label. This greatly simplifies

the decoding process to the point where an additional model, such as an HMM, is

not required. In fact, the greedy decoding process of the CTC output is trivial –

simply take the maximum likelihood label at each frame, and then remove blanks

and consecutive duplicates.

Because the blank label is trained to act as a delimiter between portions of the

input sequence corresponding to a single label, this greedy decoding process generally

results in a good approximation of the most probable label sequence. However, it is

not guaranteed to produce the most probable labeling. For this, one must perform a

complete search through the probability distributions across all frames and find the

maximum-likelihood path. Using a beam-search decoding process, which makes the

decoding more computationally feasible than a complete search, the decoding is guar-

anteed to find the most probable labeling (given a wide enough beam-search). This

beam-search CTC decoding process is used for all experiments discussed in this thesis.

When training a model with CTC loss, a maximum likelihood function is calculated

and then optimized. This function is determined using the output of the network and

the forward-backward algorithm, as described in the original paper [16]. While the

process of calculating the maximum likelihood function is quite complicated, its use
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during training allows for a simple decoding process.

Part of CTC’s simplicity can be attributed to its loss in generality. CTC can only

be used for label sequence prediction tasks, not all sequence prediction tasks. This

more-general set of all sequence prediction tasks includes those with continuous or

ordinal output domains, such as audio or video generation, for which CTC is not

applicable. Additionally, CTC inherently introduces the simplifying constraint that

the ordering of elements in the input sequence and the corresponding labels in the

output sequence must be the same. This is, of course, true for tasks such as speech

recognition because words are always spoken in the order they are meant to be heard

or written. However, this means that CTC is not suitable for tasks such as machine

translation due to syntactic differences between languages (e.g. word order, subject-

object-verb and object-adjective orderings, etc.). This constraint further reduces the

set of tasks for which CTC may be used.

2.3.3 LSTM with CTC

The original paper on CTC specifies its use with recurrent neural networks (RNNs).

This is a natural choice, since RNNs are inherently able to process variable-length

sequences, and CTC takes a variable number of frames as input. Therefore, one can

use an RNN model, such as a long short-term memory (LSTM) model, to output a

variable-length sequence that can then be used by the CTC loss and decoding pro-

cesses. Figure 2-14 shows the use of an LSTM model for temporal feature extraction

and the use of the model’s output by CTC for sequence prediction.

There is a major downside to using an LSTM, however, and that is its speed.

Training an LSTM to a level capable of achieving similar results as other architectures

takes drastically longer than those other architectures. Also, LSTMs, like all RNNs,

tend to easily overfit to training data, which results in a model that fails to generalize

well to unseen data. Despite LSTMs being the more natural choice for the task at

hand, these downsides led us to also consider the use of CTC with other architectures.

Nevertheless, the LSTM with CTC approach is compared to these other architectures

in the experiments presented in this thesis. Reported error rates for the LSTM,
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Figure 2-14: The use of a bidirectional LSTM model for temporal feature extraction
followed by sequence prediction using CTC. This figure shows a two-layer bidirectional
LSTM with one fully connected layer, although it is common to use more layers.

however, are of an unoptimized LSTM model, due to the slow training time and lack

of the amount of training data needed to properly train the model.

Figure 2-15: The details of the LSTM architecture used in evaluation of an LSTM
with connectionist temporal classification (CTC).

The LSTM architecture used in conjunction with CTC, as shown in Figure 2-15,

uses two bidirectional LSTM layers of size 256 units, followed by dropout, two time-

distributed fully-connected layers of size 1024 units, and a time-distributed softmax

output layer. This multi-layer bidirectional LSTM encodes the variable-length input,

producing a variable-length softmax output, which is then inputted to the CTC loss

function and CTC decoder during training and prediction time, respectively.
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2.3.4 CNN with CTC

Figure 2-16: The use of a CNN model for window feature extraction followed by
sequence prediction using CTC. This figure shows a three-layer CNN with one fully
connected layer and an output softmax layer, although it is common to use more
layers.

Because the output of an RNN at a particular frame is directly dependent on the

RNN’s state as determined by previous frames, the output at each frame retains the

context of all previous frames. The same is not true for convolutional neural networks

(CNNs), which are generally used for spatial feature recognition and therefore have

no internal state from past frames to use as context. However, we have found that

with carefully selected hyperparameters, CNNs with CTC are able to achieve similar,

if not better, results as LSTMs.

Despite our data being distinctly time series, the features can be learned as spatial

features with a CNN, as shown in Figure 2-16. This does, however, require inputting

a fixed-length window of the signal, as CNNs operate on fixed-size inputs only. Un-

fortunately, this need to split a variable-length signal into many fixed-length windows

introduces two new hyperparameters, window size and window stride, and the tuning

of both is critical in achieving good performance with a CNN with CTC model.

Because CNNs do not have memory to use as context like LSTMs, they must

be capable of outputting an accurate probability distribution given only the input
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Figure 2-17: The details of the CNN architecture used in evaluation of a CNN with
connectionist temporal classification (CTC).

window. This requires that the window not be too small, lest the network be provided

with too little information for classification. The window must also not be too large,

lest it be too difficult for the network to determine which portion of a signal (that may

span multiple words) is relevant for classification. The stride of the windows must

also not be too large, or there may be too few frames corresponding to each label for

CTC to accurately decode into an output sequence. Additionally, increases in either

the window size or stride result in a weakly decreasing number of windows for CTC

to work with, as shown in Equation 2.1. This is of concern because CTC requires

that the input sequence be equal in length or larger than the output sequence.

𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =

⌊︂
𝑙𝑖𝑛𝑝𝑢𝑡 − 𝑙𝑤𝑖𝑛𝑑𝑜𝑤

stride

⌋︂
+ 1 (2.1)

The CNN architecture used in conjunction with CTC is a deep CNN consisting of

five convolutional layers, each paired with a max pooling layer, followed by dropout,

two fully-connected layers of size 1024 units, and a softmax output layer. All layers

are time-distributed, as the input is a variable number of timesteps (i.e. signal win-

dows). See Figure 2-17 for details on number of filters, filter sizes, strides, etc. These

time-distributed convolutional layers encode the variable-length input, producing a
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variable-length softmax output, which is then inputted to the CTC loss function and

CTC decoder during training and prediction time, respectively. The input window

size for this model is one second of data (250 samples, given a 250 Hz sampling rate),

and the window stride, determining the overlap of each timestep, is 250 milliseconds

of data. These values were empirically chosen after careful tuning.

2.4 Language Model

Language models are probability distributions over a sequence of words that allow

for the calculation of the probability of a given sequence of words. In turn, language

models can be used to compare the probabilities of two or more sentences and de-

termine the sentence with the highest likelihood. [18]. Sequence prediction models,

specifically those related to speech recognition, sometimes make use of language mod-

els to increase the accuracy of predictions. Here I will discuss the use of a language

model with connectionist temporal classification (CTC) to boost the accuracy of the

CTC-based sequence prediction approaches.

CTC makes the assumption of independence of labels in the output sequence. This

is a very strong assumption, and is clearly not true in the case of transcribing natural

language. This assumption makes it impossible to directly integrate a language model

into the CTC classification process. Fortunately, a language model can be applied to

CTC externally in a very simple manner.

A paper by Chow et al. [19] discusses using a language model in conjunction with

an "n-best" beam-search using the Viterbi algorithm. This is exactly the decoding

process being performed by the CTC beam-search decoder, except that the input to

the search is the output of the CTC classification model. Therefore, we can apply

a language model simply by using the output of the CTC beam-search decoder. By

outputting the top n most likely paths during decoding along with their likelihoods,

we can then apply a language model to update the likelihoods and reorder the most

likely paths. As long as a sufficient number of paths are outputted and the language

model is representative of the silent speech being decoded, the language model is
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likely to lead to an increase in accuracy in the transcription process.

It is difficult to determine the probability of a sequence beyond a certain length

directly from frequency counts, as the sequence may appear too infrequently for its

frequency count to give an accurate estimate of its probability. Instead, we use the

common approach of approximating this probability by analyzing the probabilities of

subsequences of a certain length (i.e. n-grams). We approximate the probability of a

length-n sentence using its length-k subsequences as shown in Equation 2.2.

𝑝(𝑤1, 𝑤2, ..., 𝑤𝑛) =
𝑛∏︁

𝑖=1

𝑝(𝑤𝑖|𝑤1, 𝑤2, ..., 𝑤𝑖−1)

𝑝(𝑤𝑖|𝑤1, 𝑤2, ..., 𝑤𝑖−1) ≈ 𝑝(𝑤𝑖|𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖−1)

𝑝(𝑤1, 𝑤2, ..., 𝑤𝑛) ≈
𝑛∏︁

𝑖=1

𝑝(𝑤𝑖|𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖−1) (2.2)

We can use the frequency of length-k substrings in corpora of the target language

to get a good approximation of the probabilities of each of the substrings and, in

turn, the entire sentence, as shown in Equation 2.3.

𝑝(𝑤𝑖|𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖−1) ≈
count(𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖)

count(𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖−1)

𝑝(𝑤1, 𝑤2, ..., 𝑤𝑛) ≈
𝑛∏︁

𝑖=1

count(𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖)

count(𝑤𝑖−𝑘, 𝑤𝑖−𝑘+1, ..., 𝑤𝑖−1)
(2.3)

Language models can be used with other sequence prediction methods through

use of the Viterbi algorithm to find the maximum likelihood output sequence from the

model’s output probability distributions. This thesis, however, focuses on applying

language models using output from the CTC beam-search decoder, which already

makes use of the Viterbi algorithm and therefore greatly simplifies integration of a

language model.
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Chapter 3

Datasets and Testing Procedures

In this chapter, I will discuss the datasets and testing procedures used in the evalua-

tion of the continuous subvocal speech recognition system presented in this thesis.

3.1 Dataset Limitations

AlterEgo uses neuromuscular signals from internal articulation to transcribe silent

speech into text. Before presenting the datasets used, I will discuss the downsides to

using this specific modality as a means of input.

3.1.1 Lack of Applicable Datasets

There are many datasets of subvocal speech publicly available; however, none are spe-

cific to internal articulation – precisely the input modality that AlterEgo uses. One

example is the EMG-UKA dataset [20], which consists of subvocalization data that

includes mouth movements, as if speaking normally but without any sound. Internal

articulation differs significantly from this means of input in that there are no visi-

ble movements. Any movement creates clearly visible features in electromyographic

(EMG) data, and so the EMG-UKA dataset is not comparable to internal articulation

data. The frequency range of features produced by large muscle movements, such as

lip movement, overlaps significantly with the frequency range of internal articulation
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features, and therefore there is no effective way to separate the signals from these two

actions. Due to the lack of applicable datasets, all datasets used in the evaluation of

this system have been collected manually.

3.1.2 User and Session Dependence

Another challenge when working with data from internal articulation is that it is

highly user-specific. The style of subvocalization may significantly differ across users,

resulting in vastly different features for the same words. While the same is true for

normal speech (e.g. accents and voice type affect the way one’s speech sounds), there

are several very large datasets that can be leveraged in order to learn this variation.

The task of transcription from internal articulation, as previously mentioned, lacks

the analogous datasets to learn from.

Additionally, data collected across several recording sessions, even by the same

user, sometimes differs significantly. This may be for a few reasons. First, the data is

very dependent on precise electrode placement. Even small perturbations in the po-

sitions of electrodes have been shown to lead to a decrease in accuracy. As electrodes

are generally removed between recording sessions, it is expected that some amount of

error is introduced between sessions due to electrode placement. Second, the data has

also shown to be somewhat dependent on recording time. This is either due to one’s

style of subvocalization changing over time, or changes in one’s physiological state

(e.g. skin impedance, muscle fatigue, etc.) that cannot be controlled. For the reasons

stated above, all experiments performed in the evaluation of this system were done so

immediately after collection of the relevant training data. This, unfortunately, means

that our models must be trained with a relatively small number of training samples,

as will be discussed in the next section. We expect that given the opportunity to

collect larger datasets, the accuracy of the system could be improved.

52



3.2 Recorded Datasets

In the evaluation of this system, we use the standard digit classification benchmark

task for subvocal transcription systems, as well as classification tasks focused on

vocabularies of selected words. For both vocabularies, we test our classification model

with a single-label classification task (i.e. labelling individual words), as well as our

system as a whole with our primary task, label sequence (entire sentence) prediction.

Additionally, we explore the potential of phoneme- and syllable-level prediction by

mapping the recorded words to smaller units of speech, and address the challenges

facing a system operating on these levels.

3.2.1 Digit Sequence Datasets

A standard benchmark for subvocal speech transcription systems is testing the clas-

sification accuracy on subvocal digits 0 through 9. We recorded multiples datasets

of subvocal digits, each containing 50 samples per digit. This serves as a baseline to

determine the word-level classification accuracy for subvocal digits, a useful baseline

when evaluating a sentence-level system. Then, we collected two datasets of subvocal

digit sequences – the first containing all permutations of digits 0, 1, and 2 as a simple

sequence-level test; and the second containing random sequences of five digits (chosen

from digits 0 through 9).

3.2.2 10-Word Vocabulary, 20-Sentence Dataset

We also recorded datasets of subvocal words from a small vocabulary of 10 selected

words. The selected words focused on communicating basic needs: ["i", "am", "cold",

"hot", "hungry", "tired", "want", "need", "food", "water"]. Similarly to the subvocal

digits datasets, we first test the world-level classification accuracy as a baseline. We

then construct 20 sentences, each containing five words chosen from the 10-word

vocabulary, as shown in Table 3.1. The dataset consists of 10 samples of each of these

20 sentences (we are able to use so few samples per sentence because the sentences

share many of the same words). No significance is placed on constructing grammatical
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Selected 10-Word Vocabulary
i am cold hot hungry

tired want need food water

Recorded (Nonsensical) Sentences
cold water want hungry i want hot cold hungry am

water tired hot i food hungry want am water cold
food hungry need hot tired i need cold tired food

cold hot want water am want food i hot water
need want tired cold am food cold need am i
hot food tired am hungry tired hungry food am hot
hungry water need i want need hungry cold want i

water hungry tired need food cold food want need water
food hot am cold i am tired water hot hungry

water i am need tired tired i hungry hot need

Table 3.1: The 10 vocabulary words and the 20 sentences constructed from the 10
word vocabulary such that no two sentences share a bigram. The sentences are
nonsensical, but this is acceptable (even somewhat desirable) for the task of learning
the alignment between individual words. Example recordings of these sentences can
be seen in Figure B-1 in Appendix B.

English sentences, as the vocabulary can easily be replaced with other words. The

goal of testing this dataset is simply to see if sentences that have never been seen

before can be reliably transcribed. Example recordings of these sentences can be seen

in Figure B-1 in Appendix B.

When constructing the 20 sentences, we add the constraint that no two sentences

can share a bigram (i.e. two-word phrase), which, of course, means that no two

sentences can share any higher level n-grams as well. This is done intentionally to

ensure that the CTC classifier does not learn arbitrary alignments between groups of

words, instead of the correct alignment of the individual words. For example, Figure

3-1 shows an example training sentence ("i need cold tired food"). If in all training

sentences every occurrence of the word "i" is followed by "need" and every occurrence

of the word "need" is preceded by "i", then incorrect alignments such as those shown

in the figure may be learned. This is because there is no training data that forces

the correct alignment between this group of words ("i need") to be learned. Training

on other sentences that include the same words but none of the same bigrams (e.g.
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Figure 3-1: In this example, if in all training sentences every occurrence of the word
"i" is followed by "need" and every occurrence of the word "need" is preceded by "i",
then incorrect alignments such as those shown above may be learned.

"need i", "you need", "i want", etc.) is one way to ensure the correct alignment is

learned.

3.2.3 20-Word Vocabulary, 200-Sentence Dataset

We also wanted to test our model on a larger vocabulary, sentences with a variable

number of words, and a higher rate of speech than the previous datasets. For this,

we created a 20-word vocabulary, focused on communicating basic needs and asking

simple questions: [’hello’, ’i’, ’am’, ’you’, ’are’, ’the’, ’want’, ’need’, ’cold’, ’hot’, ’food’,

’where’, ’what’, ’how’, ’feeling’, ’doing’, ’tired’, ’water’, ’hungry’, ’thirsty’]. From

this vocabulary, we generated 200 sentences, each consisting of 3-6 words. Samples

from 150 of the sentences were used in training, and samples from the remaining 50

sentences were used exclusively in a test set of sentences that were never seen during

training. Similarly to the 10-word vocab dataset, when generating these sentences,

we prioritized sentences that share very few bigrams with other sentences (although

there is no hard constraint, as was the case with the 10-word vocab dataset). This

means that not only are the sentences in the test set entirely absent from the training

set, but the two sets share very few sub-sentence phrases as well. We collected 5

samples of each sentence, split between the training and test sets, summing to 1000

samples collected in total. Table 3.2 shows the 20 chosen vocabulary words. The list
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Figure 3-2: The distribution of rates of speech in the 20-word vocabulary, 200-sentence
dataset, reported in words per minute (WPM). 1000 samples of sentences were col-
lected in total. The average is 102.4 WPM, with 62% of samples having a rate of
speech of at least 100 WPM.

of the 200 sentences we generated can be found in Table A.1 in Appendix A. Also,

example recordings of some of these sentences can be seen in Figure B-2 in Appendix

B.

Selected 20-Word Vocabulary
hello i am you are the want need cold hot
food where what how feeling doing tired water hungry thirsty

Table 3.2: The 20 vocabulary words chosen to make up the 200 sentences. The 200
sentences we generated from this vocabulary can be found in Appendix A.

While recording this dataset, the user was given feedback regarding their rate

of speech, reported in words per minute (WPM). Using this feedback, they were

instructed to try to achieve a consistent rate of speech of 100 WPM, or slightly

higher. The average rate of speech for the entire dataset is 102.4 WPM, with 62%

of samples having a rate of speech of at least 100 WPM. The distribution shown in

Figure 3-2. This is in sharp contrast to the other sentence-level datasets we collected

(without any attention to rate of speech), which averaged 70.5 WPM.
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3.2.4 Subvocal Phonemes and Syllables

We also explored the potential of subword-level sequence prediction, such as phoneme-

and syllable-level prediction. Because a CTC-based sequence prediction model does

not require segmented input data, we used the same dataset as for the word-level

sequence prediction tasks and simply mapped the sequences of words to the sequences

of their constituent phonemes/syllables. Unfortunately, we found that it was quite

difficult to train a model to predict these smaller units of speech, as few distinguishable

features appear in the data. Those features that do appear have a much longer

duration than a single phoneme or syllable, and so are representative of a larger unit

of speech and not suitable for training at the level of phonemes or syllables.

3.3 Testing Procedures

We used various testing procedures in evaluating the quality of the recorded datasets

and the accuracy of our system. Due to the session dependence affecting our data,

testing data was collected during the same recording session as the training data

(generally immediately afterwards). For this reason, in addition to testing the sys-

tem in real-time after training our models, we also recorded and saved the real-time

testing data to file, which provided us with a test set that we can evaluate directly

during training as well as playback later on (as if in real-time) after changes to the

system have been made. We saved the entire recording session, rather than only the

sequences representing subvocal speech, so that we can adjust the bounds of the la-

beled data later if necessary. Simulating real-time tests allowed us to make changes

to the model and test it as if in real-time without needing to collect new training data

each time. It has also allowed us to test our models on subsets of the channels used

during data collection. This is useful for determining which electrodes provide rele-

vant information to our models. For the sake of consistency, most of the experiments

reported in Chapter 4 use test sets evaluated during training time.
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Chapter 4

Evaluation

In this chapter we report the error rates achieved by each of the approaches (as

outlined in Chapter 2) for each of the collected datasets. We also evaluate the error

rate reduction that results from the use of a language model, calculate the rate of

information transfer, where appropriate, and report the results of an experiment to

determine the relative contributions of each electrode to the classification accuracy of

our model.

4.1 Metrics

First, we will discuss the metrics used in evaluating the accuracy and information

transfer rate of our sequence prediction models.

4.1.1 Average Normalized Edit Distance

In evaluating the accuracy of sequence prediction models, we need a measure of how

close to correct a predicted sequence is to the target sequence. Because the predicted

sequence can vary in length, we cannot use a simple elementwise comparison to calcu-

late accuracy. Instead, the normalized edit distance between the predicted sequence

and target sequence is used as the metric for sequence prediction error rate. In other

words, the error rate is defined as the number of edits (replacements, additions, or
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deletions) to the predicted sequence needed to arrive at the target sequence, divided

by the length of the target sequence. The average of this over an entire dataset is used

to evaluate our models. Equation 4.1 gives a more formal definition of the average

normalized edit distance as a function of the predicted sequences [ŷ1, ŷ2, ..., ŷn] and

the corresponding target sequences [y1,y2, ...,yn].

𝛿 =
1

𝑛

𝑛∑︁
𝑖=0

levenshtein(ŷi,yi)

|yi|
(4.1)

We use a length-normalized metric so that the length of the target sequences

used in evaluation does not affect the report error rate. This allows us to evaluate

our model with variable-length sequences, as we do in our final dataset (see Section

3.2.3).

4.1.2 Rate of Speech and Information Transfer Rate

The primary goal of this system is to transcribe internal articulation continuously

at high rates of speech. Therefore, while we evaluate the error rates for each of our

models as a measure of accuracy, it is also important to evaluate the rate of speech

and information transfer.

First, we calculate the rate of speech of a dataset by calculating the average words

per minute (WPM) of the sentences. This is done as in Equation 4.2, where 𝑠 is the

sampling rate in Hz, 𝑙𝑖 is the number of samples in sentence 𝑖, and 𝑘𝑖 is the number

of words in sentence 𝑖 for each of the 𝑛 sentences.

WPM =
60𝑠

𝑛

𝑛∑︁
𝑖=0

𝑘𝑖
𝑙𝑖

(4.2)

This metric gives the rate of speech of the data, but tells us nothing about the

system’s performance at this rate of speech. The performance of human-computer

interfaces (specifically, brain-computer interfaces) is generally measured by bit-rate

(also referred to as Wolpaw rate), as explained by Kronegg et al. [21] and originally

proposed by Wolpaw et al. [22]. The bit-rate of a system is calculated as shown
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in Equation 4.3, where 𝐵 is the information transfer rate in bits per minute, 𝑉 is

the application speed (average words per minute, in our case), 𝑃 is the classification

accuracy (one minus the word error rate, in our case), and 𝑁 is the vocabulary size.

𝐵 = 𝑉

[︂
log2𝑁 + 𝑃 log2 𝑃 + (1− 𝑃 ) log2

(︂
1− 𝑃

𝑁 − 1

)︂]︂
(4.3)

This metric takes into account not only the rate of speech, but also the accuracy

and size of the vocabulary. Larger vocabularies allow for the transfer of more informa-

tion with a single word, since there are more unique symbols to choose from. At the

same time, a less accurate system is less capable of transferring information due to

errors. Therefore, maximizing this metric, for any system, requires finding a balance

between vocabulary size and accuracy, which are generally inversely correlated.

4.2 Model Comparison

4.2.1 Digit Sequence Datasets

The system was first tested with a very simple task – sequence label prediction for

permutations of the digit sequence [0, 1, 2]. With a vocabulary of only three words,

this test was primarily used for evaluating the effectiveness of CTC in sequence predic-

tion given near-perfect word classification accuracy, which is to be expected for such

a small vocabulary. We confirmed this expectation by evaluating our network on the

corresponding single-label classification task, resulting in a 97.3% test accuracy.

The dual classifier approach, as described in Section 2.3.1, achieves an error rate

(i.e. average normalized edit distance) of 11.8%. Most of this error is attributed

to misclassifications, although false positives and false negatives on the part of the

activation classifier were the cause of 1.7% and 2.5% of the errors, respectively.

The CNN with connectionist temporal classification (CTC), as described in Sec-

tion 2.3.4, achieves a lower error rate of 5.5%. Interestingly, the largest source of

error in this case is not misclassification, but rather erroneous additions or deletions

to the label sequence. This can be seen in Table 4.1, which shows that out of five
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incorrect predictions, three of the errors are erroneous additions or deletions, and the

other two are caused by misclassifications.

Target Prediction
0, 2, 1 0, 2, 1
2, 1, 0 2, 1, 0
2, 0, 1 2, 0, 1
0, 2, 1 0, 2, 1
2, 0, 1 2, 0, 1
2, 1, 0 0, 2, 1, 0
1, 0, 2 1, 0, 1
0, 1, 2 0, 1, 2
2, 1, 0 2, 1, 0
2, 1, 0 2, 1, 2

Target Prediction
2, 1, 0 2, 1, 0
0, 1, 2 0, 1, 2
0, 1, 2 0, 1, 2
1, 0, 2 1, 0, 2
1, 2, 0 1, 2, 0
0, 2, 1 0, 2, 1
2, 0, 1 2, 0, 1
1, 2, 0 1, 2, 0
1, 0, 2 1, 0, 2
0, 1, 2 0, 1, 2

Target Prediction
0, 2, 1 0, 2, 1
0, 1, 2 0, 1, 2
0, 2, 1 0, 2, 1
1, 0, 2 1, 2, 0, 2
1, 0, 2 0, 2
1, 2, 0 1, 2, 0
1, 2, 0 1, 2, 0
2, 0, 1 2, 0, 1
2, 0, 1 2, 0, 1
1, 2, 0 1, 2, 0

Table 4.1: Example test output of the 0-1-2 permutation sequence labeling task.
Incorrect predictions and the corresponding target sequences are bolded.

The LSTM with CTC, as described in Section 2.3.3, unfortunately takes drasti-

cally longer than the CNN to train – on the order of days – and for this reason could

not be optimized for the dataset. The unoptimized LSTM with CTC has been shown

to achieve an error rate of 15.5%. For larger datasets, this problem is exacerbated.

Therefore we only report the results of the CNN for the other datasets.

The system was then tested on the more difficult task of labeling sequences of

digits consisting of digits 0 through 9. All sequences tested were 5 digits in length,

meaning this task evaluates the model’s ability to label longer sequences comprised of

a larger, 10-word, vocabulary than the previous task. We again evaluate our models

on the corresponding single-label classification task, which results in a 96.1% test

accuracy, as shown by the confusion matrices in Figure 4-1.

The dual classifier performed similarly on this larger-vocabulary dataset, achieving

an average normalized edit distance of 12.6%. The CNN with CTC approach achieved

a minimum error rate of 8.5%. This slightly higher error rate (compared to the smaller

digits dataset), while possibly attributable to variation in dataset quality, is likely the

result of CTC having difficulty learning the alignment between words given a larger

vocabulary. Because the model must learn to determine word alignment at the same

time that it learns to classify individual words, a larger vocabulary likely results in a
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Figure 4-1: The training and validation confusion matrices for the task of classifying
digits 0 through 9.

higher error rate even if a single-label classifier performs similarly on the larger vocab.

4.2.2 10-Word Vocabulary, 20-Sentence Dataset

Next, we evaluated our system with sentences from a vocabulary of 10 selected words.

The selected words focused on communicating basic needs: ["i", "am", "cold", "hot",

"hungry", "tired", "want", "need", "food", "water"]. The single-label classification of

this vocabulary resulted in a 93.3% test accuracy. This is noticeably less than the 10-

digit vocabulary evaluated in the previous section, and may be indicative of the words

in this vocabulary being less distinct from each other. The higher error rates of the

sequence-to-sequence models seem to suggest the same. The dual classifier achieves

an error rate of 17.3%, and the CNN with CTC was able to achieve an error rate of

11.5% without the use of a language model (as was the case in the previously reported

experiments). However, it was able to achieve a much lower error rate of 7.0% with

the use of a language model (see Section 4.3 for more details on the language model

evaluation). Table 4.2 shows example test output from the CNN with CTC model.
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Target Prediction
cold food want need water cold food want need water

water hungry tired need food water hungry tired need food
tired i hungry hot need tired i hungry hot

water hungry tired need food water hungry tired need food
water hungry tired need food want hungry tired need food

i need cold tired food i need cold tired food
water hungry tired need food water hungry tired need food
cold food want need water cold food want need water

tired i hungry hot need tired i hungry hot need
i need cold tired food i need cold tired food

food hungry need hot tired food tired food hot tired
water hungry tired need food water hungry tired need food

Table 4.2: Example test output of the 10-word vocabulary sequence labeling task.
Incorrect predictions and the corresponding target sequences are colored red.

4.2.3 20-Word Vocabulary, 200-Sentence Dataset

We also evaluated our system with variable-length sentences from a vocabulary of

20 selected words. For this dataset, we aimed for a rate of speech of ∼100 WPM,

achieving an actual average rate of speech of 102.4 WPM – significantly higher than

the average 70 WPM of the other datasets. The selected words focused on commu-

nicating basic needs and asking simple questions: [’hello’, ’i’, ’am’, ’you’, ’are’, ’the’,

’want’, ’need’, ’cold’, ’hot’, ’food’, ’where’, ’what’, ’how’, ’feeling’, ’doing’, ’tired’,

’water’, ’hungry’, ’thirsty’].

The single-label classification of this vocabulary resulted in a 82.7% test accuracy.

The dual classifier achieves an error rate of 26.2%. Even though this vocabulary is

larger than that of other datasets, and so a decrease in accuracy is expected, the

observed accuracy of the dual classifier approach is well below what is required for

a practical system. The CNN with CTC approach, on the other hand, was able to

achieve an error rate of 14.8% without the use of a language model. Similar to the

10-word vocab dataset, the model performs even better with the use of a language

model, achieving an error rate of 10.7% (see Section 4.3 for more details on the

language model evaluation). A word error rate of 10.7% makes for a much more

usable system, especially at a rate of above 100 WPM. Furthermore, calculating the
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Target Prediction
how cold water how cold water

hot hello are thirsty hot hello are thirsty
what are the i feeling tired what are the i feeling tired

thirsty feeling you hot water hello thirsty feeling you hot water
cold feeling hungry cold feeling hungry

how hot food how hot food
where hot food where i food
need you what need you what

feeling hungry where food thirsty feeling hungry am food thirsty
you want what you want what

what feeling how want water where what feeling how want water where
feeling what am tired feeling what am tired

Table 4.3: Example test output of the 20-word vocabulary sequence labeling task.
Incorrect predictions and the corresponding target sequences are colored red.

information transfer rate using a 10.7% WER and a rate of speech of 102.4 WPM

results in a bit-rate of 345.8 bits per minute – significantly higher than other similar

systems, and drastically higher than BCI systems, which generally report between

5-25 bits per minute according to Kronegg et al. [21]. Table 4.3 shows example test

output from the CNN with CTC model.

4.3 Language Model

For certain vocabularies, the use of a language model can significantly reduce the

error rate of a sequence-to-sequence model. To test the use of a language model with

our system, we used a simple one based on the bigrams and trigrams of the sentences

in the dataset of interest. To apply the language model, we halved the probability

of a sequence for each bigram and trigram it contained that has a frequency count

of zero in our language model. In general, language models leverage assumptions or

knowledge known about the dataset to increase accuracy. In our case, we make the

simple assumption that bigrams and trigrams that are unseen in the dataset are half

as likely to occur as those that are found in the dataset, and evaluate the CNN with

CTC model accordingly.

Figure 4-2 shows the reduction in error rate achieved upon applying the language
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Figure 4-2: Comparison of error rates of the CNN with CTC model with and without
a language model.

model described above, and how the language model affects the error rate throughout

the training process. As expected, the language model introduces little benefit until

the model is moderately-well trained (around epoch 25). This is because a language

model is unlikely to lead to much of an improvement if the classifier is not already

somewhat close to the correct prediction. After the model is moderately-well trained,

however, the language model reduces the error rate by a consistent 4-15%. For the 10-

word vocab dataset, this results in a final error rate of 7.0% – a significant reduction

from the 11.5% error rate without the use of a language model. Similarly, for the

20-word vocab dataset, this results in a final error rate of 11.4%, rather than the

16.4% error rate without the use of a language model

In using CTC, we always choose the most-probable prediction, according to the

probabilities reported by the CTC decoder, as the final prediction. Therefore, looking

at the error rate as determined by only the most probable prediction, we fail to see

some of the benefit of the language model – namely, the sequences that were closer to

being predicted correctly, but still weren’t. Another useful method of evaluating the

boost in accuracy provided by a language model is to look at the error distribution

over the top-k highest probability predictions. For this, we can look at the top-k

error rate, defined as the average minimum error rate among the k most probable
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Figure 4-3: Comparison of error distributions of the CNN with CTC model with
and without a language model when near fully trained. Note that the top-10 error
rates with and without a language model are the same. The differences between
these top-k error rates give a measure of where in the k most probable predictions the
highest-accuracy predictions reside. For example, a large difference between the top-k
and top-(k+1) error rates indicates that some (k+1)th most probable predictions are
higher in accuracy than the corresponding kth most probable predictions. This, in
turn, signals that the accuracy of the system could be improved if the probabilities
of the predictions could be better correlated with their accuracies.

predictions, for several values of k. The differences between these top-k error rates

give a measure of where in the k most probable predictions the highest-accuracy pre-

dictions reside. For example, a large difference between the top-k and top-(k+1) error

rates indicates that some (k+1)th most probable predictions are higher in accuracy

than the corresponding kth most probable predictions. This, in turn, signals that

the accuracy of the system could be improved if the probabilities of the predictions

could be better correlated with their accuracies. As one can see in Figure 4-3, the

differences between the top-k error rates for higher values of k are much smaller when

a language model is used, indicating that the more-accurate predictions are ranked

closer to the top in the ordering of most-likely predictions when using a language

model. This confirms that the language model is effective in providing a boost in

accuracy, even for the predictions that are not most-probable and therefore are not

used.

Table 4.4 shows the top 10 predictions for an example sequence with and without

a language model. The predictions are colored green, yellow, or red, depending on
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Color Legend: edit dist. of 0 (correct) edit dist. of 1 edit dist. of 2

Ground truth: food hungry need hot tired
Top 10 predictions without LM Top 10 predictions with LM

#1 food hungry need want tired food hungry need hot tired
#2 food hungry need hot tired food hungry need want tired
#3 food hungry need want tired food hungry need hot tired
#4 food hungry need want water tired food hungry need want tired
#5 food hungry water need want tired food hungry need water tired
#6 food hungry tired need want tired food hungry water need want tired
#7 food hungry need want i tired food hungry tired need want tired
#8 food hungry need hot tired food hungry need want water tired
#9 food hungry i need want tired food hungry i need want tired
#10 food hungry need water tired food hungry need want i tired

Table 4.4: The top 10 predictions with and without a language model, in order of
decreasing probability, for an example sequence. The predictions are colored green,
yellow, or red, depending on if they have an edit distance from the target sequence of
0, 1, or 2, respectively. This example is an instance of the most probable prediction
being correct only with the use of a language model. Note: there are many repetitions,
since the CTC decoder outputs each prediction independent of all others.

if they have an edit distance from the target sequence of 0, 1, or 2, respectively.

One can clearly see that the application of a language model often results in correct

predictions being more probable, and therefore more highly ranked within the top 10

predictions. In fact, this example is an instance of the most probable prediction being

correct only with the use of a language model. This is just one example, however,

and there are many sequences for which the predictions are already correct without

a language model, as well as some for which the language model doesn’t lead to any

significant improvement.

4.4 Electrode Contribution

The electrode positions used for experiments in this thesis were chosen empirically.

Experimenting with various subsets of the 8 chosen positions, which are shown in the

left plot of Figure 4-4, has revealed that not all of the electrodes are necessary. In fact,

many subsets of the electrodes achieve similar accuracies, likely due to the fact that
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Electrode Placement Relative Electrode Contributions

Figure 4-4: Left: The arrangement of 8 signal electrodes (colors and gray, on face and
neck), with reference and bias electrodes also shown (white and black, on earlobes).
Right: The relative electrode contributions, represented by the sizes of the electrode
markers.

many of the electrodes pick up very similar features. For this reason, we wanted to

quantify how large of a role each electrode played in determining the overall accuracy

of our models. To do this, we calculated the contribution of each electrode to the

classification accuracy for a specific task (digit prediction) by running over 1000 trials

with different subsets of electrodes. The contribution of an electrode 𝑥 is defined as

the average percent decrease in error rate upon adding the electrode 𝑥 to all subsets

of electrodes that do not already include 𝑥. More formally, the contribution of each

electrode is calculated as shown in Equation 4.4.

the set of all electrodes, 𝐴 := {0, 1, 2, 3, 4, 5, 6, 7}

𝛿(𝐶) := the average error rate achieved with electrode set 𝐶 ⊂ 𝐴

contribution of 𝑥 ∈ 𝐴, 𝛼(𝑥) :=
1

2|𝐴|−1

∑︁
𝐶⊂(𝐴−{𝑥})

𝛿(𝐶)− 𝛿(𝐶 ∪ {𝑥})
𝛿(𝐶)

(4.4)

Using this method, we arrived at the results shown in Table 4.5, which are also

shown visually in the right plot of Figure 4-4. Unsurprisingly, electrodes 5, 1, and

2, all of which show high amplitude features, have high contribution. Electrode 5

contributes the most by far, on average reducing the error rate to less than half
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Electrode 0 Electrode 1 Electrode 2 Electrode 3
0.2858 0.2243 0.1818 0.0715

Electrode 4 Electrode 5 Electrode 6 Electrode 7
0.0434 0.5543 0.1602 0.0879

Table 4.5: The calculated electrode contributions, shown visually in Figure 4-4.

of its original value (55.4% decrease) upon inclusion. Surprisingly, electrode 0 also

contributes significantly (second highest) to the accuracy, which may be because it is

located far away from the other electrodes, and therefore may pick up a significantly

different signal. Also surprisingly, electrode 3 contributes very little, despite picking

up a signal that seems fairly distinct from that of the other electrodes. This may

indicate that the features collected by electrode 3, while distinct, simply don’t help

the model distinguish between words as much as the features from other electrodes.
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Chapter 5

Conclusion

5.1 Summary of Results

In this thesis, we test several approaches to label sequence prediction against multiple

self-collected datasets. The first approach uses a dual word and activation classifier to

classify words and the silence between them in order to output a sequence of individual

labels. Despite performing fairly well, this is arguably a naive approach, and one

that requires pauses between words, resulting in a slow rate of transcription. The

second approach explored uses an LSTM with connectionist temporal classification

(CTC), which is a method of unsegmented label sequence prediction that uses an

augmented single-label classifier and a beam-search decoder. However, we were unable

to fully evaluate this approach due to the slow training time characteristic of LSTMs

and the difficulty of training LSTMs without very large datasets. Our final and

highest-performing approach was a carefully-tuned CNN with CTC. We also include

a language model that uses the output of CTC’s beam-search decoder to further

reduce error rates.

Table 5.1 compares the performance of each approach when evaluated on each of

the tasks. We report the single-label classification accuracy of a simple CNN on each

of the datasets (for use as a single-label baseline), as well as the sequence prediction

error rates (i.e. average normalized edit distance) for all of the sequence-to-sequence

approaches. As expected, higher accuracies on the single-label classification tasks
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Dataset

{0,1,2} sequences

10-digit sequences

10-word, 20-sent.

20-word, 200-sent.

Single-Label

Accuracy

CNN

0.973
0.961
0.933
0.827

Sequence Prediction Error Rate

(average normalized edit distance)

Dual Class. LSTM+CTC CNN+CTC CNN+CTC+LM

0.118 0.155 0.055 N/A
0.126 - 0.085 N/A
0.173 - 0.115 0.070
0.262 - 0.148 0.107

Table 5.1: The final accuracy/error rates achieved by each approach, evaluated
against each of the collected datasets. We report the single-label classification ac-
curacy of a simple CNN on each of the datasets (as a single-label baseline), as well
as the sequence prediction error rates (i.e. average normalized edit distances) for all
of the sequence-to-sequence approaches. While the LSTM with CTC approach was
tested on all three of the datasets presented here, drastically longer training times
and the lack of large datasets prevented us from fully training and optimizing the
LSTM. Therefore, we only report the error rate of the unoptimized LSTM approach
for one dataset.

were observed along with lower error rates on the corresponding sequence prediction

tasks. For all of the datasets evaluated, the CNN with CTC model outperformed the

dual classifier approach significantly – achieving a 6.9% lower error rate on average.

While the LSTM with CTC approach was also implemented and ran on all of the

datasets presented here, drastically longer training times and the lack of large datasets

prevented us from fully training and optimizing the LSTM as we did with the other

models. Therefore, while we still report the error rate of the unoptimized LSTM

approach for one dataset, we will not draw any conclusions regarding the error rate

of this approach.

Furthermore, a language model can be applied to the 10-word and 20-word vocab

sentence datasets, unlike the digits datasets. The integration of a simple language

model to the CNC with CTC approach further lowered the error rate of the 10-word

vocab dataset by 4.5%, achieving a final error rate of 7.0%. Similarly, the language

model reduced the error rate of the 20-word vocab dataset by 4.1%, resulting in a final

error rate of 10.7%. This amounts to a more than 10% and 15% error rate reduction

between the dual classifier and the CNN with CTC and language model for the two

sentence datasets, respectively.

The use of CTC to determine word alignment, rather than the activation classifier
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used by the dual classifier approach, removes the need to have a significant pause

between words. As such, the potential transcription rate of models using CTC is

significantly higher. The average rate of speech for the first three collected datasets

is about 70 words per minute (WPM), and the rate of speech for the 20-word, 200-

sentence dataset is a much higher 102.4 WPM. CTC is capable of learning from such

high rates of speech without noticeably sacrificing accuracy. In fact, many of the

correctly-transcribed sentences in the last dataset have a rate of speech of above 110

or even 120 WPM, demonstrating that the CTC-based approach is capable of learning

from rates of speech significantly higher than 100 WPM. The maximum transcription

rate we found the dual classifier is capable of, on the other hand, is only about 40

words per minute. Calculating the information transfer rate for the CNC with CTC

model on the final dataset, which gives a 10.7% error rate at an average rate of speech

of 102.4 WPM, results in a bit-rate of 345.8 bits per minute.

5.2 Conclusion and Discussion

In this thesis, I present my work on a continuous silent speech recognition system,

capable of transcribing neuromuscular signals from internally articulated sentences.

The system is able to accurately transcribe silent speech at rates of over 100 words

per minute (WPM). As this is only slightly lower than the rate of conversational

speech, the system does not require significant pauses between words, and feels fairly

natural to use as a result. The largest dataset that we collected for the evaluation of

our system consists of 200 unique sentences (5 recorded samples each) comprised of

3-6 words from a 20-word vocabulary. The dataset has a high average rate of speech

of 102.4 WPM, with many correctly-transcribed sentences having a rate of speech

higher than 110 or even 120 WPM. Training a deep convolutional neural network

(CNN) with connectionist temporal classification (CTC) and a language model on

this dataset results in a 10.7% word error rate. This is a remarkably low error rate for

continuous silent speech at over 100 WPM. Calculating the information transfer rate

given these metrics results in a bit-rate of 345.8 bits per minute, which is significantly
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higher than that of other similar systems, and drastically higher than that of BCI

systems, which generally report bit-rates between 5 and 25 bits per minute, according

to Kronegg et al. [21]. On a smaller, 10-word vocab, 20-sentence dataset, the same

model achieves a word error rate of 7.0%, and performs similarly or slightly better on

digit sequence prediction benchmarks as well.

This serves to show that continuous silent speech, without any sound or visible

movement, can be transcribed and used as a high-accuracy alternative method of com-

munication at rates of speech above 100 WPM. This enables discreet communication

when speaking normally is not desirable, as well as communication in environments

not suited for normal speech. More importantly, for individuals who have difficulty

speaking, such as those with ALS, MS, or other disorders that affect speech, this

alternative method of communication could significantly improve the ease and speed

in which they communicate.

5.3 Future Work

This system still has much room for improvement. In its current state, the device

is somewhat session-dependent, meaning data collected in previous sessions with the

device does not necessarily generalize to future sessions. We have found that ensuring

the electrodes are placed in exactly the same positions each time can minimize this

issue. A larger amount of training data may help to solve this problem as well. The

system also is still highly user-dependent, meaning each user must train the system

on their own examples of silent speech. In a similar way to how regular speech

recognition systems have learned to transcribe speech despite different voices and

accents, it is possible that, with enough data, a silent speech recognition system such

as this one could learn enough of the variation in silent speech to overcome this issue

of user dependence. Alternatively, transfer learning may prove useful in training the

system to work with new users without requiring a large volume of training data.

Furthermore, we have seen that an increase in vocabulary size or rate of speech,

when accompanied by an increase in training data, results in only a slight decrease in
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accuracy. This is evidence that the system may be able to scale to larger vocabularies

or higher rates of speech. An incrementally-trained system, where the user adds

training samples each time they want to add a new word to the vocabulary, seems

to be a promising way to expand the vocabulary while retaining the system’s high

accuracy.

There are a number of ways this system could be improved, as well as many

other potential applications of this technology. It is my hope that this system will be

expanded upon and used as an improved means of communication and information

access, helping its users to achieve their goals as a seamless extension of themselves.
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Appendix A

Tables
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20-Word Vocab, 200-Sentence Dataset
what am i doing where the food are where you how are you want i

what are you doing the doing you how where water are doing what i am what i the water where

feeling the need food am cold water hot water how food cold how am want hot food cold

hello thirsty hungry want the tired need i are what you hungry hello thirsty tired feeling the need how what where you are feeling

i am doing cold water where feeling how cold water am feeling tired

thirsty hungry are where hot hello how you doing the hungry water am tired doing what i hot need are thirsty hello want

am i the water you need feeling tired how hot want food doing what need food cold feeling tired

food cold feeling hot want you thirsty hello hungry am i are the how tired water want what where food

cold food feeling thirsty hello am you hungry doing what i want are where the feeling how

water where hot food need doing the hungry hello thirsty am where i are what you

tired hello hot water how thirsty hungry i need you food are water where the doing need what am tired cold feeling

feeling cold food need doing tired how hot want need thirsty where hungry hello doing what the

how you are feeling i am hungry hungry hot food want need water

hello are thirsty doing the cold how i am where water want what you need

need food cold feeling want thirsty tired hungry hot the feeling hello what i am doing

where are you cold water cold food how need hello tired thirsty hot you need the water where i are doing

feeling what am tired thirsty tired cold food hungry hot how tired hello where i want

how you are feeling tired the water tired doing what need want food cold am hungry hot hello are thirsty

the food you i want what feeling cold water where am doing thirsty how hot hungry

hello are doing the want what i water where you want am feeling hungry want how

are thirsty hungry hot hello hot i am doing what where you want the hello thirsty you are what need

how am i the hot feeling cold water tired food how cold water cold feeling hungry

am hello where are you thirsty i want the water where need doing what cold feeling how hot

cold food thirsty tired hello what the hungry doing are hungry i am you

where hot water thirsty need doing feeling how hello tired you where water what are the i feeling tired

how am doing thirsty hot cold food cold food hot hungry hello hungry i want you need

are where the water how am doing what cold food tired feeling need hot hot food thirsty want

where i tired the how hello need are what you hungry hot food water am doing hello want are thirsty

i you water where the cold need what am tired want cold feeling hungry how hot food

are thirsty hello where you doing what i want the hello thirsty cold water tired

need are hungry am where i want how the food feeling cold food you how water

hungry thirsty doing what need where you are hello tired am what i want doing the need

need tired feeling cold water am how tired feeling hungry doing thirsty feeling you hot water hello i want the

doing what are how tired want cold feeling tired hello hot want the are hungry thirsty need you i am tired

how am feeling what water where hot food doing are hungry thirsty what hello where the water i am

hello tired doing how you want feeling hungry where food thirsty tired i need the hot water where what are you hungry

tired how cold am doing hungry cold food hot are doing hello need the thirsty how am i need water

you want what thirsty feeling where hot cold feeling tired hello doing are food i am the

need you what tired cold food feeling how hungry need food where hot water i want are thirsty hello

doing what you feeling the cold water want hungry how am tired where hello are the thirsty hot water

you want what where am tired i want cold feeling how hungry thirsty cold food need

hello i the are you hot what feeling how want water where am cold food thirsty need food hot want

hello are hungry am doing the how tired i you need doing cold feeling hello

where what need food need water want food hot what you want thirsty need hungry how the are where am i

thirsty hot food hello hungry you where i what are the am tired food hot water feeling hungry

how hot water hello need water i thirsty how what you are tired the where am feeling tired

tired hot food hungry doing cold feeling hello what where am i you thirsty food are hungry

water the feeling how cold tired need cold food doing hello you thirsty want water am hungry i are the cold

doing what need how cold food hello where hot need doing you want are thirsty

am i doing the how hungry where what hello need food thirsty want are hot what where i need you cold

Table A.1: The 200 sentences generated from the 20 word vocabulary. While some
sentences shown are grammatical (eg. "what am i doing", "i am hungry"), most of the
sentences are nonsensical, to aid in training the model to learn the alignment between
words. Still, there are many phrases contained in the nonsensical sentences that are
quite common (eg. "how are you want i") that may actually be used in practice.
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Appendix B

Figures
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Figure B-1: Examples of signals recorded for each of the 20 sentences in the 10-word
vocab dataset.
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Figure B-2: Examples recordings for 20 of the 200 sentences in the 20-word vocab
dataset. The signals shown here have visibly fewer features than the signals of the
10-word vocab dataset (shown in Figure B-1). This is due to the much higher rate of
speech of this dataset (over 100 WPM).
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