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Abstract—Self-driving microscopy is a promising
method of increasing the efficiency and precision of
laboratory experiments, while also decreasing the cost
of laboratory operations. However, precise instrument
localization is a difficult task due to error generated
by physical instruments. Techniques such as Bayesian
inference allow for a noise-tolerant localization process,
but there are currently few implementations for applica-
tions of microscopy, which often involve operating in an
environment with the potential for extreme observational
error. Here, I propose the design and implementation
of a self-driving microscopy system that is capable of
localization and autonomous navigation given only partial,
and potentially imperfect, information. This system uses
the approach of Monte Carlo Localization (MCL) and
various improvements to the basic MCL implementation
to ensure efficient belief convergence. The aim of this work
is to provide the Quantum Photonics Group at MIT’s
Research Laboratory of Electronics with a self-driving
microscopy setup, allowing experiments to be automated.

I. INTRODUCTION

The most challenging aspect of the creation of
any self-driving system is its ability to understand its
location within the surrounding world — a task known
as localization. For applications that must track and make
decisions based on the location of mobile instruments,
localization is of critical importance. One difficulty,
however, is that physical systems are commonly subject
to some amount of noise as a result of operational error.
If left unchecked, this error will amplify over time,
rendering the physical system unable to complete its
task.

Like many applications, microscopy stands to bene-
fit from automation, but also suffers from the challenges
inherent to such an automated system. A self-driving
system must be able to perform accurate localization.
However, at the extreme scales that microscopy systems

generally operate at, instrument error can have a pro-
found impact on the accuracy and overall performance
of the localization process. Worse still, environmental
noise, such as a piece of dust or a fabrication error,
can make localization even more challenging. Similar
problems are commonplace in many fields, but more
prevalent in applications of microscopy. This is likely
part of the reason few automated microscopy systems
currently exist.

The Quantum Photonics Group at MIT’s Research
Laboratory of Electronics uses microscopy to view
nitrogen-vacancy centers in diamond, which appear only
on the scale of microns. An automated system capable
of global localization and autonomous navigation would
be useful for automating laboratory experiments, which
would, in turn, decrease time and cost spent on each
experiment. In this paper, I detail the design of a self-
driving microscopy system that is capable of local-
ization and autonomous navigation given only partial,
and potentially imperfect, location information. In order
to ensure resilience to error, the system uses Monte
Carlo Localization (MCL) with various improvements
to the base implementation to increase the efficiency and
performance of the system.

II. RELATED WORK

Many approaches currently exist that are capable
of achieving global localization, or the task of locating
oneself within the world given an initial uniform belief
distribution. Most implementations use a type of Markov
localization, which maintains a belief distribution over
all possible hypotheses as observations are made. These
hypotheses are grouped by filters to make the task
of maintaining all hypotheses more manageable. For
example, the simplest approach of Markov localization
uses a histogram as a filter, which can be thought of
as discrete grid. Each cell has a certain probability of
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the instrument being located there. The problem with
this approach is that the precision of the algorithm
is inversely proportional to the performance because
the resolution of the grid is the determining factor for
both. This is a serious problem when performance and
precision are both of paramount importance, as would
be the case for a precision real-time self-driving system.

Another common approach that strikes a balance
between performance and precision is known as Monte
Carlo localization (MCL), a Markov localization imple-
mentation with particle filters, rather than a histogram
filter [1]. Each particle represents a location of interest.
They are randomly distributed over the domain for the
first iteration, assuming no information regarding the
instrument’s location is known initially. At each iteration
the particles are weighted according to the likelihood
that the instrument is located there. In subsequent iter-
ations, particles are resampled based on the weights of
the previous iteration’s particle set. So, over time the
particles cluster around the most likely location, as seen
in Fig. 1. Because the particles are points in a continuous
space, the precision using this approach is as high as the
observations allow for. The Quantum Photonics Group
will need precision down to roughly 10 nanometers,
making the MCL approach much better-suited than the
grid-based approach.

The proposed system will also provide active local-
ization, which is the process of navigating the instrument
in the direction of maximum expected information gain
in order to achieve rapid belief convergence. A few
active implementations exist, such as the one by Jensfelt
and Kristensen [2]. Jensfelt et al.’s implementation is
heavily dependent on heuristics that use specific features
of the environment, such as wall boundaries. Not only
are these heuristics not guaranteed to result in the optimal
convergence time, but they can occasionally result in
increased distance from the goal position. The imple-
mentation could be modified to decrease the time it
takes to navigate to the goal position as well as the
convergence time. Also, while these previous implemen-
tations offer inspiration, ideally the proposed system
would be generalizable to any setting. I’ve also drawn
inspiration from Engelson et al. [4] when taking error
into consideration in the active localization process.

Many of the systems mentioned above include
desirable features for a self-driving microscopy system
— namely the use of Monte Carlo Localization for
global localization, as well as the potential for active
localization. However, improvements must be made to
these approaches for use in a system that is generalizable
and error-resistant enough to function in any application
of microscopy. These approaches serve as inspiration,

as well as provide a baseline implementation to expand
upon and use in the evaluation of the proposed system.

Fig. 1. Using MCL, the belief distribution is updated as an in-
strument moves across an environment and makes observations.
The red dots represent the particle filters used by the MCL algorithm
to converge to the actual location. Collectively, they represent the
belief distribution.

III. METHODS

A. Primary Tasks

The system laid out in this paper accomplishes three
primary tasks: global localization, local localization, and
autonomous navigation of laboratory instruments. Global
localization is necessary in order for the system to
discover the location of an instrument with no prior
knowledge of its location. The Monte Carlo Localization
algorithm provides an efficient method of achieving
global localization as well as local localization — the
task of maintaining a correct belief during system oper-
ation and instrument motion.

Local localization through this method alone, how-
ever, is not a sufficient, as the system must be resilient
to observational and environmental error and have the
ability to rapidly recover from erroneous observations.
This is achieved through modifications to the MCL
algorithm. Specifically, the redistribution rate of particles
is lowered to ensure that only multiple consecutive
erroneous observations could result in the system holding
an incorrect belief. This parameter has been set to a
predefined value determined by empirical observations.

Autonomous navigation is the final task the system
must be capable of achieving. For the system to be
beneficial in laboratory environments, it is critical that
this task be completed in an efficient manner. For this
reason, the system utilizes active localization in situ-
ations where the belief confidence is less than some
predefined threshold.
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Fig. 2. A system overview detailing the interactions between the instrument, the localization and navigation system, and the database
in which the known world model and error profile are stored. Notice the feedback loop that originates with the instrument sensors and
concludes with the instrument control through the observations and instructions pipeline in the localization/navigation module.

Fig. 2 shows an overview of how the system compo-
nents interact to accomplish these tasks. Further details
are available in the Technical Approach section.

B. Analytical Methods

Implementations of the three primary tasks are eval-
uated through the use of a modular system, capable of
testing via a simulation or physical laboratory hardware.
The module design also serves to simplify the process of
integration with laboratory hardware. Several variations
of the system, each with a unique feature, have been
tested on identical tasks in order to test the performance
and significance of each feature in isolation.

The simulation exactly mimics a physical instru-
ment in its use of the system, providing accurate data
that can be used in the analysis of the system. The state
of the simulation is preserved after the completion of an
experiment so that the state history can be analyzed and
success metrics can be calculated. These success metrics
include belief convergence time, ratio of realized path
length to optimal path length, and deviation from optimal

path after belief convergence — all of which are directly
calculable using only data on the instrument’s path,
belief over time, the goal position, and the instrument’s
initial position.

C. System Architecture

The command center that controls the laboratory
hardware of the Quantum Photonics Group is written in
MATLAB. The system has been designed as a collec-
tion of Python modules that are able to be referenced
from a MATLAB environment. The simulation has been
implemented in Python and interacts with the modules
in an identical manner. NumPy and SciKit were used in
the development of the MCL algorithm and driver, and
Tkinter is used in the simulation’s graphical interface.
An example view of the simulation can be seen in Fig.
3.

IV. TECHNICAL APPROACH

For the reasons outlined in the Related Works
section, my technical approach focuses on an implemen-
tation of Monte Carlo Localization (MCL) and various
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Fig. 3. A screenshot of the simulation used in evaluation of
system features. The instrument is shown in blue, and the hypotheses
of the instrument’s locations, given the instrument’s current field of
view, is represented by the green dots. The red particles collectively
represent the belief distribution. Over time, the particles converge to
the instrument’s actual location, a process which is shown here in
progress.

improvements. MCL provides an efficient, arbitrarily
precise solution to the problem of global localization.
The following improvements further improve the imple-
mentation, making it more suitable to applications of
microscopy.

A. Resampling Rate

The resampling rate of MCL, which is the percent-
age of the particles that are resampled during each update
iteration, has a large effect on the belief convergence pro-
cess. More specifically, it allows for a tradeoff between
rapid convergence and error resilience. This is because
if the resampling rate is very high, the system is able
to learn more quickly its location given correct observa-
tions. However, at the same time, higher resampling rates
make the system less resilient to erroneous observations,
since each observation has a larger effect on the current
belief when the resampling rate is high. On the other
hand, if the resampling rate is too low, less confidence
is placed on each observations, meaning localization may
take longer. However, the lower the resampling rate is,
the more resilient to erroneous observations the system
is.

This tradeoff between convergence time and error
resilience is crucial and depends heavily on the envi-
ronment (and the amount of error present in the envi-
ronment). Fig. 4 shows the resampling rate vs. the ratio
of realized/optimal path lengths taken by the simulated
instrument — a lower value is better. The simulation
uses an environment with 20% error, which is quite high;
however, the results look similar for a large range of
error rates. As you can see in Fig. 4, a resampling rate
that is high, but less than one, is ideal. In other words,

resampling/repositioning the majority of the particles,
but not quite all of them, is beneficial. This makes
intuitive sense when one considers the fact that making
two or more erroneous observations consecutively is
unlikely. So, even if only a few particles remain in the
correct region after an erroneous observation, the next
observation would correct this error and reposition the
particles to the correct region once again. This approach
solves one root cause of what is commonly known as the
particle-deprivation problem, which is erroneous obser-
vations, while also allowing for rapid belief convergence.

Fig. 4. A high resample rate, but one that is less than 1, is
ideal in environments with error. This figure shows the resampling
rate vs. the ratio of realized/optimal path lengths (so a lower y-value
indicates better performance).

B. Redistribution Rate

Using ideas from Thrun et al. [3] regarding sam-
pling techniques, I added the concept of a redistribution
rate to the implementation of the MCL algorithm. It
works as follows: after each particle resampling, a small
subset of the particles, chosen according to the redistribu-
tion rate, are randomly distributed over the environment.
This decreases the probability that any region of the
environment will be entirely devoid of particles —
which in turn means that it is possible for the system
to conclude that any region of the environment is the
correct location of the instrument. Without redistribution
in this manner, consecutive erroneous observations could
cause the correct region of the environment to become
devoid of particles (the particle-deprivation problem),
leaving the system unable to recover the correct belief.
The redistribution rate is particularly important in the
early stages of the localization process, but becomes
less important as belief convergence is achieved — after
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which the resampling rate becomes more important due
to its contribution to error resilience.

Fig. 5 shows the realized/optimal path length ratio
vs. the redistribution rate in a testing environment with
few particles. An environment with few particles was
chosen for testing because in such an environment parti-
cle deprivation becomes a risk. To protect against particle
deprivation, as explained above, the redistribution rate
can be increased to some non-zero value. As you can
see in the figure, a low but non-zero redistribution rate
clearly gives the best performance. This is because,
similarly to the resampling rate, the redistribution rate
allows for a tradeoff — one between convergence time
and the risk of particle deprivation. If the redistribution
rate is too high, the belief convergence process takes
longer, as the system is not able to learn as quickly.
However, as explained above, if the redistribution rate is
too low, particle deprivation, which leads to drastically
increased convergence times, becomes a risk.

Fig. 5. A low but non-zero redistribution rate is ideal in envi-
ronments with few particles. This figure shows the redistribution
rate vs. the ratio of realized/optimal path lengths (so a lower y-value
indicates better performance).

C. KLD Sampling

Due to the nature of the MCL algorithm, the more
particles that are used, the faster the system is able to
converge to the correct belief. However, more particles
also increases the computation time of each update step.
Since the system being developed for applications of
microscopy must run in real-time, the particle count
is therefore a large concern. It is important to note
that as convergence progress, less and less particles are
necessary (or helpful, for that matter). Therefore, ideally

the system would respond by reducing the particle count
according to how close to convergence the system is.

KLD sampling, in the context of the MCL algo-
rithm, is the process of updating the number of particles
based on necessity. The variance of the set of particles
is used to determine an updated particle count. When
there is more confidence in the belief, indicated by a low
variance in the particle set, then the number of particles
is reduced to save computation time. This process occurs
according to the following formula, where n0, the initial
number of particles, is determined empirically, nmin is
the minimum number of particles allowed, σ2 is the
variance of the particle set, and α is an arbitrary scalar
applied to the variance:

n = max(nmin,
⌈
n0 ·min(σ2/α, 1)

⌉
); (1)

V. RESULTS

We’ve already discussed the benefits of using the
tuned resampling rate, redistribution rate, and KLD
sampling to improve performance. Here, I will discuss
the simulated MCL implementation with these various
improvements included, as described in the Analytical
Methods section. The implementation of MCL described
above, after tuning to the specific environment, was able
to achieve a ratio of realized/optimal path lengths of
1.23, given the task of reaching a goal position 800 mi-
crons away. This means that while the optimal path was
800 microns in length, the path taken by the instrument
was 1.23 · 800 = 984 microns — a difference of 184
microns. Given that each data point is separated by about
40 microns, this means the instrument, on average, had
to move enough to observe 4 data points before gaining
a strong belief as to where it was located relative to the
goal position. This is a promising result considering each
observation in this environment contained only 4 bits of
information. Given a higher information density, the ratio
decreases further — achieving a ratio of about 1.06 given
6 bits of information in each observation. Fig. 6 shows
the paths taken by the simulated instrument through the
two aforementioned environments. You’ll notice that the
path is shorter for the 6-bit environment, which indicates
that the system was able to converge to the correct belief
more quickly. This difference in realized path length
across environments shows the system’s ability to learn
about its environment using only observations of it. Also
notice the small irregularities in the path once the system
has achieved convergence (the relatively straight line
segment). These are a result of erroneous observations
in the environment. The system is able to handle these
incorrect observations without its belief being drastically
altered, and therefore it continued traveling along the
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most direct path to the goal position. (Note: I still
need to include details about how the improvements
made (see Technical Approach) affected the accuracy
and performance of the system. This data has not been
collected yet).

Fig. 6. The system has a clear advantage in environments with
higher information densities — illustrating the significance of
learning through observations. On the left is an environment with
4 bits of information per observation, and on the right is a 6-bit
environment. Notice the difference in realized paths between the
two environments. The 6-bit environment shows a clear advantage
in being able to reach the goal position more quickly, and the system
is able to take this extra information into account using MCL.

The active localization implementation failed to
achieve any meaningful improvement over the imple-
mentation that utilized only the tuned resampling rate,
redistribution rate, and KLD sampling features. In fact,
during many trials, it led to worse performance. Results
show that the implementation without active localization
was able to achieve a realized/optimal path length ratio
of 1.06. The implementation with active localization
was only capable of achieving around 1.27 — meaning
that on average, the active localization introduced an
additional 21% error into the localization and navigation
system. With that said, in roughly 12% of the trials,
the active implementation was able to achieve better
performance than the baseline.

This could be the result of noise, or it could be in-
dicative of a more challenging problem that would need
to be addressed to improve the performance of the active
localization. My hypothesis as to why, on average, the
active localization worsens the accuracy but is sometimes
able to improve it is that the space of subsequent actions
that would need to be explored in order to implement
the optimal active localization algorithm is continuous.
This is because the instrument could potentially move
any distance (less than the instrument’s step size) in
any direction. Each one of these many actions would
result in a different position of the instrument and a
different observation. For computational reasons, only a
small portion of this action space can be explored, as this
exploration process occurs for each of the hypothesis,
and performing an exhaustive search would prevent the
system from operating in real-time (such an implemen-

tation was created, and the runtime of each iteration
increased from on the order of tens of milliseconds to on
the order of tens of seconds). Because of this reduction
in the action space, it is quite likely that at each iteration
of the MCL algorithm the optimal action to take is
not being explored, and therefore it may be better in
most scenarios to ignore the active localization heuristic
entirely and simply move in the expected direction of the
goal position, as the base implementation does. For this
reason, active localization was not used during testing of
the other features and the system as a whole, as reported
previously.

VI. CONCLUSION AND DISCUSSION

The system succeeds in automating laboratory tasks
in an accurate, precise, and error-resilient manner. The
improvements have shown considerable improvement
over the baseline MCL implementation. This successful
automation of laboratory task illustrates two things: 1)
MCL and the improvements made is suitable for the task
of global localization and autonomous navigation in the
context of applications of microscopy, and 2) inexpensive
laboratory equipment, such as the ones modeled in this
paper, can be used in lieu of more expensive hardware
the is capable of achieving the same task through closed-
loop control systems. So, not only does this ”smarter”
system save time regarding the completion of labora-
tory experiments, but it also has the potential to save
laboratories considerable amounts of money that would
otherwise be spent on hardware.

Still, there remains more work to be done. First,
the active localization implementation shows little to
no advantage over the system without that active local-
ization (sometimes even worsening the accuracy). This
is likely a result of the environment used in testing.
Nonetheless, this feature requires more testing. Second,
the system should be tested on different data-encoding
schemes. The ones discussed in this paper all used a
randomly generated environment containing k bits in
each observation. This is likely not the case in many
settings, however, and it is not unreasonable to expect the
accuracy of the system to fall in other more organized
environments. Finally, the system needs to be evaluated
once it is fully integrated into laboratory hardware.
Currently, the simulation has been the primary mode
of testing. While the simulation was modeled after real
environments, complete laboratory integration is the next
logical step in the evaluation process. These next steps
should prove the worth in using such a ”smart” self-
driving microscopy system in a laboratory setting.
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